SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P34703 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MDFIDNQAEESDASSGHSDDEEPQSKKMKMAKEKSKRKKKMVASSDEDED    50
51 DDDDEEENRKEMQGFIADDDDEEEDAKSEKSEKSRHSGEDELDDEDLDLI 100
101 NENYDIRETKKQNRVQLGDSSDEDEPIRRPNHEDDDLLSERGSDDGDRRK 150
151 DRGRGDRGGYGSESERSEDDFIEDDGDAPRRHRKRHRGDENLPEGAEDDA 200
201 RDVFGVEDFNLDEFYDDDDGEDGLEDEEEEIIEDDGEGGEIKIRRKKDTT 250
251 KKSTLLESIEPSEIDRGFLLPGDKKIAKEDLPERFQLRRTPVTEADDDEL 300
301 ESEALWIIKYAFEEGTVTNQADLDQDDKLDCIMNLDPSVYEDRKKAVIKS 350
351 IKKVLQFIRVRSNSFEPTFIGFYRKEDIDNLLTMNNLWRVYDFDEKWCHL 400
401 SEKKNKIYDLMRRMREYQELSDDLTAKRRPISDADLMDTKYAETLEQLTD 450
451 IHANFQLLYGALLDDMIRWEKGRLTGEEEEQEYRVKFKSSIRNDKYQMCV 500
501 ENGIGELAGRFGLTAKQFSENLNWKKHDIEQDPMLPLEAAEEYVCPAFSD 550
551 SDMVLNGAKFMLAKEISRQPQVRHSVRQEFRQSAHFWIKPTKKGRDTIDQ 600
601 THPLYDKRYIKSKPVRSLTAEEFLFYHKAKEDGLVDVLIMYESEEDQDSN 650
651 NYLVNKYLSDSIFQKDEYTENVEQWNSVRDECVNMAITEMLVPYMRDELY 700
701 NTILEEAKTAVAKKCRKEFASRISRSGYLPDFDNNDDDDDGMDQHGARRI 750
751 MAVCYPTERDEASFGVMVDENGAIVDYLRMVHFTKRTFGGGNNGLRKAES 800
801 MDLFKKFVQRRKPHAIGLNIEDMECTRLKRDLEEAVADLFSQNLIYKPIP 850
851 VFLMDNEAAKVYMRSNVSLAENPDHPPTLRQALSLARLLLDPIPEYAHLW 900
901 NIDEDIFCLSLHPLQRDIDQEQLALVLSHELVNKVNEEGVDINKCAEFPH 950
951 YTNMLQFTCGLGPRKATDLLKSIKANDNLIESRSKLVVGCKLGPKVFMNC 1000
1001 AGFIKIDTIKVSEKTDAYVEVLDGSRVHPETYEWARKMAVDALEVDDSAD 1050
1051 PTAALQEIMESPDRLRDLDLDAFADELSRQGFGEKKSTLYDISSELSARY 1100
1101 KDLRQPFQEPTGELLYDLLARSGKEIREGAKVLGTVQSVQYRKVDKDAAD 1150
1151 SMLPDVGEDGLFTCPCCKSFTSSAPGGIQEHMLGDSRQGGCPGTPVGIRV 1200
1201 RFDNGMTGFCPNKNISSSHVDNPLTRVKINQPYYFKVLKLDKERFSLFLS 1250
1251 CKSSDLKEDDLSQRDQYWDEHQYQADLELMKSESKKKTEANTRVKRVIAH 1300
1301 PNFHNVSYEAATKMLDEMDWSECIIRPSANKDSGLSVTWKICDRVYHNFF 1350
1351 VKESAKDQVFSIGRQLSVGGEDFEDLDELIARFVQPMIQISHEITTHKYF 1400
1401 FPNGTCEETEAVEQFVREKKRELGRSPYVFSASYRQPCQFCISYMFDNTE 1450
1451 RIRHEYFKIVPHGVRFRHQNFDTLDRMMAWFKRHFHEPPIELRRSAIPAP 1500
1501 QYRVGAPPAAPYYPPQFVGYH 1521

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.