SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P34709 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MKLKYNKLLVSVVIVTFVTFGLLLAECFGKSIDYQEKSIFPSFVSQGFFE    50
51 TRTNNEEYIIEKIAQTQENGVDMRSTLHFTQHGYLLNNISNLKIKFRQKT 100
101 YTLNDVCFKPHITIFQQSSSSDQNEYPHYIQRLLLEMQRLSPCLIVTPLN 150
151 CFYDIYRIHGEISNWNKNTDFLNRRLRNSYIEAIGENDERPYVKSNYGPS 200
201 LIKSWADHMFDLPSKSFTNSTKDALFQKIKLWLLSIEPRQKTCAASIHSC 250
251 DTPLDSEHYFNICTDMQSVDNFAEKKTKFKLEDVDEEFAMNLDCVDDQEQ 300
301 FIEWMQELEIRKMYSHVTEKPDYPNVVNQTCDKIFHDLNSTGIEFFDGSR 350
351 SFSSTKSQFDTMQTEIVLLTPEMLLSAMQHSDFVNGFESIWTIEKAEELI 400
401 HEFRLALKEETEKFKENRMSKMIRVTSRVLDNTVTTKLQSFSEKQTIHFV 450
451 VNVHSLIVILFTIFVWSGAPLRSAFMFFVRDALTCLLFCFVCSTDGVIVL 500
501 DTELIKYIIVLTLANLYFTTRSSFCTERLSRCIQREKRFPINSNFASLIT 550
551 VDTMTDSRQIQYFLSTVTKYQAAQDSYSNELFERFPKNWGCTSILIFPIV 600
601 FVYWYFIDSNFDKICVSVLPSFCLAAGEELFAKNMFWKEREAMQAKQRLE 650
651 NEEQAESITGSSLEKLFAGNKPVSNTDKANIVKKSSIIRNQKPCLQDLSP 700
701 GTYDVSNFMKYPHQASRIFREKIIGLYLRILKLRTLGVILCIPAILLIVI 750
751 SIGLLFIPVKRETLHTDSKQDDIFIEFEIFNFSTNWKIVNQNLKQFSEDI 800
801 ESIGTLYTISNWQKSFERFEQETNKNASAEWNILFKWINDEPINSAVTLF 850
851 SEKSSGNQTIANPFKFRLRYGFDAKNETTVIEIVQKIDELLSKCSKNLSP 900
901 KAVGVLYEHYHRIAVVWNLFAFNQLTTAGIFIILLSIITFIFAITPTIKA 950
951 TFLFSLLVVGTQIEVAALVHLFSLDHHQIYTNLALFAGFLAAWDPFCALL 1000
1001 RYRRRILYKSETRRTPELASKRRVLLPIVATADIAQFFVLLITAFSILAI 1050
1051 ICSIVPELNIFFVPTVILIVIQIVAVFNSIIVSIATKQMFESEVRHYLHR 1100
1101 DLRGSTTAVRVYNLVQKQRLASSLDEPQVELDEFSIKRSSPPCRYYAPPP 1150
1151 KYSCKKRSRSSDEDEDSDPNQPGPSNRRSPKTGNKRVRGNGDNTELYIPN 1200
1201 RYELIVSGKSVGGNTSAAWNGPGSTLEQNMNALEECFELGVDEYDFDEHD 1250
1251 GDEGCELVQDMLDRERNLMNKRSTAQRRESRNIEKMKKSQENLDKEKSEE 1300
1301 KISESKKNQDDSIESPNLPGTPANLPVDEPLPPVGRLYIVEHVLPEEYRR 1350
1351 DPLTEPPSMEDCIRAHSDPNLPPHPRADQYPASFTRPMVEYCEDIYWTHR 1400
1401 TGQLPPGLQVPRRPYDYYHITERTPPPEDLNWVPPAESPPIPIPQQAFDL 1450
1451 LEERRRNHREQQDEAREGDLSDPEV 1475

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.