 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P34926 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MDGVAEFSEYVSETVDVPSPFDLLEPPTSGGFLKLSKPCCYIFPGGRGDS 50
51 ALFAVNGFNILVDGGSDRKSCFWKLVRHLDRIDSVLLTHIGADNLPGING 100
101 LLQRKVAELEEEQSQGSSSYSDWVKNLISPELGVVFFNVPDKLRLPDASR 150
151 KAKRSIEEACLTLQHLNRLGIQAEPLYRVVSNTIEPLTLFHKMGVGRLDM 200
201 YVLNPVKDSKEMQFLMQKWAGNSKAKTGIVLANGKEAEISVPYLTSITAL 250
251 VVWLPANPTEKIVRVLFPGNAPQNKILEGLEKLRHLDFLRYPVATQKDLA 300
301 AGAVPANLKPSKIKHRADSKESLKAAPKTAVSKLAKREEVLEEGAKEARS 350
351 ELAKELAKTEKKAKEPSEKPPEKPSKSERVRGESSEALKAEKRRLIKDKA 400
401 GKKHLKEKISKLEEKKDKEKKEIKKERKELKKEEGRKEEKKDAKKDEKRK 450
451 DTKPEVKKLSKPDLKPFTPEVRKTLYKAKAPGRVKVDKGRAARGEKELSS 500
501 EPRTPPAQKGAAPPAAVSGHRELALSSPEDLTQDFEELKREERGLLAEQR 550
551 DTGLGEKPLPADATEQGHPSAAIQVTQPSGPVLEGEHVEREKEVVPDSPG 600
601 DKGSTNRGPDSGAEVEKEKETWEERKQREAELGPENTAAREESEAEVKED 650
651 VIEKAELEEMEETHPSDEEGEETKAESFYQKHTQEALKASPKSREALGGR 700
701 DLGFQGKAPEKETASFLSSLATPAGATEHVSYIQDETIPGYSETEQTISD 750
751 EEIHDEPDERPAPPRFPTSTYDLSGPEGPGPFEASQAADSAVPASSSKTY 800
801 GAPETELTYPPNMVAAPLAEEEHVSSATSITECDKLSSFATSVAEDQSVA 850
851 SLTAPQTEETGKSSLLLDTVTSIPSSRTEATQGLDYVPSAGTISPTSSLE 900
901 EDKGFKSPPCEDFSVTGESEKKGETVGRGLSGEKAVGKEEKYVVTSEKLS 950
951 GQYAAVFGAPGHTLPPGEPALGEVEERCLSPDDSTVKMASPPPSGPPSAA 1000
1001 HTPFHQSPVEDKSEPRDFQEDSWGETKHSPGVSKEDSEEQTVKPGPEEGT 1050
1051 SEEGKGPPTRSPQAQDMPVSIAGGQTGCTIQLLPEQDKAIVFETGEAGSN 1100
1101 LGAGTLPGEVRTSTEEATEPQKDEVLRFTDQSLSPEDAESLSVLSVVSPD 1150
1151 TTKQEATPRSPCSLKEQQPHKDLWPMVSPEDTQSLSFSEESPSKETSLDI 1200
1201 SSKQLSPESLGTLQFGELNLGKEERGPVMKAEDDSCHLAPVSIPEPHRAT 1250
1251 VSPSTDETPAGTLPGGSFSHSALSVDRKHSPGEITGPGGHFMTSDSSLTK 1300
1301 SPESLSSPAMEDLAVEWEGKAPGKEKEPELKSETRQQKGQILPEKVAVVE 1350
1351 QDLIIHQKDGALDEENKPGRQQDKTPEQKGRDLDEKDTAAELDKGPEPKE 1400
1401 KDLDREDQGQRAGPPAEKDKASEQRDTDLQQTQATEPRDRAQERRDSEEK 1450
1451 DKSLELRDRTPEEKDRILVQEDRAPEHSIPEPTQTDRAPDRKGTDDKEQK 1500
1501 EEASEEKEQVLEQKDWALGKEGETLDQEARTAEQKDETLKEDKTQGQKSS 1550
1551 FVEDKTTTSKETVLDQKSAEKADSVEQQDGAALEKTRALGLEESPAEGSK 1600
1601 AREQEKKYWKEQDVVQGWRETSPTRGEPVGGQKEPVPAWEGKSPEQEVRY 1650
1651 WRDRDITLQQDAYWRELSCDRKVWFPHELDGQGARPRYCEERESTFLDEG 1700
1701 PDEQEITPLQHTPRSPWTSDFKDFQEPLPQKGLEVERWLAESPVGLPPEE 1750
1751 EDKLTRSPFEIISPPASPPEMTGQRVPSAPGQESPVPDTESTAPMRNEPT 1800
1801 TPSWLAEIPPWVPKDRPLPPAPLSPAPAPPTPAPEPHTPVPFSWGLAEYD 1850
1851 SVVAAVQEGAAELEGGPYSPLGKDYRKAEGEREGEGGAGAPDSSSFSPKV 1900
1901 PEAGESLATRDTEQTEPEQREPTPYPDERSFQYADIYEQMMLTGLGPACP 1950
1951 TREPPLGASGDWPPHLSTKEEAAGCNTSAEKETSSPASPQNLQSDTPAFS 2000
2001 YASLAGPAVPPRQEPDPGPNVEPSITPPAVPPRAPISLSKDLSPPLNGST 2050
2051 VSCSPDRRTPSPKETGRGHWDDGTNDSDLEKGAREQPEKETRSPSPHHPM 2100
2101 PMGHSSLWPETEAYSSLSSDSHLGSVRPSLDFPASAFGFSSLQPAPPQLP 2150
2151 SPAEPRSAPCGSLAFSGDRALALVPGTPTRTRHDEYLEVTKAPSLDSSLP 2200
2201 QLPSPSSPGGPLLSNLPRPASPALSEGSSSEATTPVISSVAERFPPGLEA 2250
2251 AEQSAEGLGSGKESAAHSLWDLTPLSPAPSASLDLAPAPAPAPAPAPGLP 2300
2301 GDLGDGTLPCRPECTGELTKKPSPFLSPSGDHEANGPGETSLNPPGFVTA 2350
2351 TAEKEEAEAPHAWERGSWPEGAERSSRPDTLLSSEQPLRPGKSSGGPPCS 2400
2401 LSSEVEAGPQGCATDPRPHCGELSPSFLNPPLPPSTDDSDLSTEEARLAG 2450
2451 KGGRRRVGRPGATGGPCPMADETPPTSASDSGSSQSDSDVPPETEECPSI 2500
2501 TAEAALDSDEDGDFLPVDKAGGVSGTHHPRPGHDPPPTPLPDPRPSPPRP 2550
2551 DVCMADPEGLSSESGRVERLREKGRPGRRAPGRAKPASPARRLDIRGKRS 2600
2601 PTPGKGPVDRTSRTVPRPRSTPSQVTSAEEKDGHSPMSKGLVNGLKAGST 2650
2651 ALGSKGGSGPPVYVDLAYIPNHCSGKTADQDFFRRVRASYYVVSGNDPAN 2700
2701 GEPSRAVLDALLEGKAQWGENLQVTLIPTHDTEVTREWYQQTHEQQQQLN 2750
2751 VLVLASSSTVVMQDESFPACKIEF 2774
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.