SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P35436 from www.uniprot.org...

The NucPred score for your sequence is 0.62 (see score help below)

   1  MGRLGYWTLLVLPALLVWHGPAQNAAAEKGTPALNIAVLLGHSHDVTERE    50
51 LRNLWGPEQATGLPLDVNVVALLMNRTDPKSLITHVCDLMSGARIHGLVF 100
101 GDDTDQEAVAQMLDFISSQTFIPILGIHGGASMIMADKDPTSTFFQFGAS 150
151 IQQQATVMLKIMQDYDWHVFSLVTTIFPGYRDFISFIKTTVDNSFVGWDM 200
201 QNVITLDTSFEDAKTQVQLKKIHSSVILLYCSKDEAVLILSEARSLGLTG 250
251 YDFFWIVPSLVSGNTELIPKEFPSGLISVSYDDWDYSLEARVRDGLGILT 300
301 TAASSMLEKFSYIPEAKASCYGQTEKPETPLHTLHQFMVNVTWDGKDLSF 350
351 TEEGYQVHPRLVVIVLNKDREWEKVGKWENQTLSLRHAVWPRYKSFSDCE 400
401 PDDNHLSIVTLEEAPFVIVEDIDPLTETCVRNTVPCRKFVKINNSTNEGM 450
451 NVKKCCKGFCIDILKKLSRTVKFTYDLYLVTNGKHGKKVNNVWNGMIGEV 500
501 VYQRAVMAVGSLTINEERSEVVDFSVPFVETGISVMVSRSNGTVSPSAFL 550
551 EPFSASVWVMMFVMLLIVSAIAVFVFEYFSPVGYNRNLAKGKAPHGPSFT 600
601 IGKAIWLLWGLVFNNSVPVQNPKGTTSKIMVSVWAFFAVIFLASYTANLA 650
651 AFMIQEEFVDQVTGLSDKKFQRPHDYSPPFRFGTVPNGSTERNIRNNYPY 700
701 MHQYMTKFNQRGVEDALVSLKTGKLDAFIYDAAVLNYKAGRDEGCKLVTI 750
751 GSGYIFATTGYGIALQKGSPWKRQIDLALLQFVGDGEMEELETLWLTGIC 800
801 HNEKNEVMSSQLDIDNMAGVFYMLAAAMALSLITFIWEHLFYWKLRFCFT 850
851 GVCSDRPGLLFSISRGIYSCIHGVHIEEKKKSPDFNLTGSQSNMLKLLRS 900
901 AKNISNMSNMNSSRMDSPKRAADFIQRGSLIVDMVSDKGNLIYSDNRSFQ 950
951 GKDSIFGENMNELQTFVANRHKDSLSNYVFQGQHPLTLNESNPNTVEVAV 1000
1001 STESKGNSRPRQLWKKSMESLRQDSLNQNPVSQRDEKTAENRTHSLKSPR 1050
1051 YLPEEVAHSDISETSSRATCHREPDNNKNHKTKDNFKRSMASKYPKDCSE 1100
1101 VERTYVKTKASSPRDKIYTIDGEKEPSFHLDPPQFIENIVLPENVDFPDT 1150
1151 YQDHNENFRKGDSTLPMNRNPLHNEDGLPNNDQYKLYAKHFTLKDKGSPH 1200
1201 SEGSDRYRQNSTHCRSCLSNLPTYSGHFTMRSPFKCDACLRMGNLYDIDE 1250
1251 DQMLQETGNPATREEAYQQDWSQNNALQFQKNKLKINRQHSYDNILDKPR 1300
1301 EIDLSRPSRSISLKDRERLLEGNLYGSLFSVPSSKLLGNKSSLFPQGLED 1350
1351 SKRSKSLLPDHTSDNPFLHTYGDDQRLVIGRCPSDPYKHSLPSQAVNDSY 1400
1401 LRSSLRSTASYCSRDSRGHSDVYISEHVMPYAANKNNMYSTPRVLNSCSN 1450
1451 RRVYKKMPSIESDV 1464

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.