SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P36126 from www.uniprot.org...

The NucPred score for your sequence is 0.94 (see score help below)

   1  MSNVSTASGTHFAPPQADRSVTEEVDRVNSRPDELENQEVLRQLPENGNL    50
51 TSSLQREKRRTPNGKEAERKHALPKSFVDRNLSDVSPNHSLDHIMHSNEH 100
101 DPRRGSDEENMHRLYNNLHSSNNNVHSKRNSKREEERAPQRRSSSVAYTQ 150
151 QQFNGWKKEFGHAFKKISAIGRLKSSVNSPTPAGSGHRHNQHQHQQVNEE 200
201 DLYTQRLASDLLDSLLAGCPASLFASTQFLRDEHGKRRAPLLLAKLDVRV 250
251 SPLKNDNNILDITNSNHNHRGNNNNNTGENSDRRPSIPRSSSIISISSNV 300
301 AEFMYSRNENSLFRIHLEYGIDEDRLKWSIIRSYKDIKSLHHKLKIVAFQ 350
351 QLTISKLYSDNNRYHSLQLPHFPHYKEMVKERNVMEKKAENKPSSAASAP 400
401 HTSENNNNDNGSNITSLETLSSSEISEFNIDNVKMKHLQDLIDEPDDFSQ 450
451 PIHLRLERYLRLLNIALCLRPHANRLFEFYELSPLGNLLSRESGFQGKQG 500
501 YLVIRSTAKAQGWRVSHFGKHAFKDMIDRHTTKWFLVRNSYLTYVSDLSS 550
551 TTPLDVFLIDWKFKVRFSGNKNNILDNENEINWIIHDPNLEINDELEEFG 600
601 IENDANNILDKNGKSKTHQKKSNISSKLLLLTLENSERKLKIICKSESSL 650
651 KQWMSSIIKMSTSTPWSKPNRFGSFAPVRTNSFCKFLVDGRDYFWSLSEA 700
701 LLMAKDVIYIHDWWLSPELYLRRPVKGNQGFRIDRMLKSCAEKGIKIFIV 750
751 IYRNVGNIVGTDSLWTKHSMLNLHPNIHIIRSPNQWLQNTYFWAHHEKFV 800
801 VIDETFAFIGGTDLCYGRYDTFEHVLRDDAESLLDQNFPGKDYSNARIAD 850
851 FHDLDKPFESMYDRKVIPRMPWHDVQMMTLGEPARDLARHFVQRWNYLLR 900
901 AKRPSRLTPLLTPPSDLTAEELKSLPMFEILREKSTCETQILRSAGNWSL 950
951 GLKETECSIQNAYLKLIEQSEHFIYIENQFFITSTVWNGTCVLNKIGDAL 1000
1001 VDRIVKANQEKKPWKAFILIPLMPGFDSPVDTAEASSLRLIMQFQYQSIS 1050
1051 RGEHSTFSKLKKLNIDPAQYIQFFSLRKWSTFAPNERLITEQLYVHAKIL 1100
1101 IADDRRCIIGSANINERSQLGNRDSEVAILIRDTDLIKTKMNGDDYYAGK 1150
1151 FPWELRQRLMREHLGCDVDLVEFVEKKFERFEKFAAKNYEKLHTLSKEGD 1200
1201 SGNNWSDREMIDSAMIELGYREIFGCKFSPQWKSGHGNSVDDGSTQCGIN 1250
1251 EKEVGREDENVYEKFFNSVDYGKSSRKRTPLPKHNFASLGLTFNHRAGIE 1300
1301 NVGIRDHKVLSTDPRLRKNDEHKKEVDGYGPDCWKKESNKKFKADATEQL 1350
1351 KEWALNSLASKVLDDKEMIKSEIPEGFSNYLPNEKDLEMYLTDKTVTNRN 1400
1401 KWSMLKRICYLQYLSHKLDERKTQRLKKIKDMRRHLSSSTESTRNGSNSL 1450
1451 PLNEKSNEGESTNVDQDIEGDEYHRLHEDILKNQELDDGSLDDLLSQIIP 1500
1501 KITNFNSGEIDDAKKEELLKLNFIDPYSFEDPLISSFSEGLWFTIALRNT 1550
1551 LLYKLVFHCQPDNAVQNWKEYGEFTELEQEFQINQEKLIDLEAENINSTT 1600
1601 TNVVDKDREKEKMRKAAELRMKLSGSLLYGFNQKVFDKHTAQRILERIHG 1650
1651 HLVIFPTEWLAKEVESRNWIFNSDRLSPMEIYN 1683

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.