SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P38181 from www.uniprot.org...

The NucPred score for your sequence is 0.68 (see score help below)

   1  MFQSFFHNNGPAAAGETFSDSRSYPLTNHQEVPRNGLNELASSATKAQQQ    50
51 PTHILNSYPITGSNPLMRASAMGATSGSINPNMSNMNEHIRVSGMGTSKP 100
101 LDLAGKYIDHLQHKDSNTPVLDERSYYNSGVDYNFSREKNGLGAFTPFEK 150
151 QDVFNIPDEILHEFSTSQTKTDMGIFPELNRCWITIDNKLILWNINNDNE 200
201 YQVVDDMKHTIQKVALVRPKPNTFVPAVKHLLLISTTMELFMFAISLDKA 250
251 TNELSVFNTHLSVPVQGIDVIDIVSHERSGRIFFAGQASGLNIWELHYSG 300
301 SDDWFNSKCSKVCLTKSALLSLLPTNMLSQIPGVDFIQALFEDNSNGNGG 350
351 FSQETITQLTIDQQRGIIYSLSSKSTIRAYVITEKSLEGPMSIEPAYISR 400
401 IIGTTTARAAPILGPKYLKIVKISSVAPEENNNLFLVALTVGGVRLYFNG 450
451 SMGRFNIEALRLESIKFPPSSVTPEVIQQELLHQQQEQAKRSFPFFSNLM 500
501 SSEPVLLKFQKKSSVLLETTKASTIISPGIFFSAVIKSSQQTHQQEKKEN 550
551 SSVTGTTATAGSKTVKQQPVTLQHKLFVSVPDYGILKTHGKYVENATFLE 600
601 TAGPVQQIIPLSGLFNATTKPQGFANEFATQYTSETLRVAVLTSTSIEIY 650
651 KYRTPDEIFEDLIDNPLPFVLNYGAAEACSTALFVTCKSNKSEKLRSNAL 700
701 TFLTMGIPGVVDIKPVYNRYSVSTVSSLLSKPTLSTATTNLQQSITGFSK 750
751 PSPANKEDFDLDDVILSPRFYGIALLITRLLRDIWGRHVFMTFTDNRVTS 800
801 HAFISSSDPITPSINNLKSDEISQNRNIISKVSISKDCIEYYLSSINILN 850
851 EFFITYGDSISQISAPYVLANNSNGRVIDKTEEVANQAESIAINAMIKMV 900
901 QSIKEGLSFLNVLYEESEVEGFDNQYLGFKDIISFVSLDVQKDLVKLDFK 950
951 DLFAPNDKTKSLIREILLSIINRNITKGASIEYTATALQERCGSFCSASD 1000
1001 ILGFRAIEHLRRAKEIGLRNYDSLNYHLKNATALLEQIVDDLSIEKLKEA 1050
1051 VSMMLSVNYYPKSIEFLLNIANSMDKGKLACQYVANGFLENDDRKQYYDK 1100
1101 RILVYDLVFDTLIKVDELAEKKQSSKTQNQISISNDDEVKLRQKSYEAAL 1150
1151 KYNDRLFHYHMYDWLVSQNREEKLLDIETPFILPYLMEKAGSSLKISNIL 1200
1201 WVYYSRRSKFFESAEILYRLATSNFDITLFERIEFLSRANGFCNSVSPLS 1250
1251 QKQRIVQLASRIQDACEVAGIQGDILSLVYTDARIDSAIKDELIKTLDGK 1300
1301 ILSTSELFNDFAVPLSYHEIALFIFKIADFRDHEVIMAKWDELFQSLRME 1350
1351 FNNTGKKEDSMNFINLLSNVLIKIGKNVQDSEFIFPIFELFPIVCNFFYE 1400
1401 TLPKEHIVSGSIVSIFITAGVSFNKMYYILKELIETSDSDNSVFNKEMTW 1450
1451 LIHEWYKSDRKFRDIISYNDIIHLKEYKIDNDPIEKYVKNSGNNLGICFY 1500
1501 KE 1502

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.