SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P38859 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MPGTPQKNKRSASISVSPAKKTEEKEIIQNDSKAILSKQTKRKKKYAFAP    50
51 INNLNGKNTKVSNASVLKSIAVSQVRNTSRTKDINKAVSKSVKQLPNSQV 100
101 KPKREMSNLSRHHDFTQDEDGPMEEVIWKYSPLQRDMSDKTTSAAEYSDD 150
151 YEDVQNPSSTPIVPNRLKTVLSFTNIQVPNADVNQLIQENGNEQVRPKPA 200
201 EISTRESLRNIDDILDDIEGDLTIKPTITKFSDLPSSPIKAPNVEKKAEV 250
251 NAEEVDKMDSTGDSNDGDDSLIDILTQKYVEKRKSESQITIQGNTNQKSG 300
301 AQESCGKNDNTKSRGEIEDHENVDNQAKTGNAFYENEEDSNCQRIKKNEK 350
351 IEYNSSDEFSDDSLIELLNETQTQVEPNTIEQDLDKVEKMVSDDLRIATD 400
401 STLSAYALRAKSGAPRDGVVRLVIVSLRSVELPKIGTQKILECIDGKGEQ 450
451 SSVVVRHPWVYLEFEVGDVIHIIEGKNIENKRLLSDDKNPKTQLANDNLL 500
501 VLNPDVLFSATSVGSSVGCLRRSILQMQFQDPRGEPSLVMTLGNIVHELL 550
551 QDSIKYKLSHNKISMEIIIQKLDSLLETYSFSIIICNEEIQYVKELVMKE 600
601 HAENILYFVNKFVSKSNYGCYTSISGTRRTQPISISNVIDIEENIWSPIY 650
651 GLKGFLDATVEANVENNKKHIVPLEVKTGKSRSVSYEVQGLIYTLLLNDR 700
701 YEIPIEFFLLYFTRDKNMTKFPSVLHSIKHILMSRNRMSMNFKHQLQEVF 750
751 GQAQSRFELPPLLRDSSCDSCFIKESCMVLNKLLEDGTPEESGLVEGEFE 800
801 ILTNHLSQNLANYKEFFTKYNDLITKEESSITCVNKELFLLDGSTRESRS 850
851 GRCLSGLVVSEVVEHEKTEGAYIYCFSRRRNDNNSQSMLSSQIAANDFVI 900
901 ISDEEGHFCLCQGRVQFINPAKIGISVKRKLLNNRLLDKEKGVTTIQSVV 950
951 ESELEQSSLIATQNLVTYRIDKNDIQQSLSLARFNLLSLFLPAVSPGVDI 1000
1001 VDERSKLCRKTKRSDGGNEILRSLLVDNRAPKFRDANDDPVIPYKLSKDT 1050
1051 TLNLNQKEAIDKVMRAEDYALILGMPGTGKTTVIAEIIKILVSEGKRVLL 1100
1101 TSYTHSAVDNILIKLRNTNISIMRLGMKHKVHPDTQKYVPNYASVKSYND 1150
1151 YLSKINSTSVVATTCLGINDILFTLNEKDFDYVILDEASQISMPVALGPL 1200
1201 RYGNRFIMVGDHYQLPPLVKNDAARLGGLEESLFKTFCEKHPESVAELTL 1250
1251 QYRMCGDIVTLSNFLIYDNKLKCGNNEVFAQSLELPMPEALSRYRNESAN 1300
1301 SKQWLEDILEPTRKVVFLNYDNCPDIIEQSEKDNITNHGEAELTLQCVEG 1350
1351 MLLSGVPCEDIGVMTLYRAQLRLLKKIFNKNVYDGLEILTADQFQGRDKK 1400
1401 CIIISMVRRNSQLNGGALLKELRRVNVAMTRAKSKLIIIGSKSTIGSVPE 1450
1451 IKSFVNLLEERNWVYTMCKDALYKYKFPDRSNAIDEARKGCGKRTGAKPI 1500
1501 TSKSKFVSDKPIIKEILQEYES 1522

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.