 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P39113 from www.uniprot.org...
The NucPred score for your sequence is 0.87 (see score help below)
1 MANNNSDRQGLEPRVIRTLGSQALSGPSISNRTSSSEANPHFSKNVKEAM 50
51 IKTASPTPLSTPIYRIAQACDRCRSKKTRCDGKRPQCSQCAAVGFECRIS 100
101 DKLLRKAYPKGYTESLEERVRELEAENKRLLALCDIKEQQISLVSQSRPQ 150
151 TSTDNTINGNFKHDLKDAPLNLSSTNIYLLNQTVNKQLQNGKMDGDNSGS 200
201 AMSPLGAPPPPPHKDHLCDGVSCTNHLHVKPTSTSLNDPTAISFEQDEAP 250
251 GLPAVKALKSMTTHQRSTQLATLVSLSIPRSTEEILFIPQLLTRIRQIFG 300
301 FNSKQCLYTVSLLSSLKNRLPAPRLLAPSTSTKLKEKDEDKKLDDDSAFV 350
351 KRFQSTNLSEFVDLKKFLISLKFNINSFSKQSEKPANDQDDELLSLTEIK 400
401 ELLHLFFKFWSNQVPILNNDHFLIYFNNFVEVVKHLSTENLETNNTTKST 450
451 VTTNHEIFALKLLMMLQMGLLVKIKMEKIKYTVPKNPKAKYARLMAYYHQ 500
501 LSLIIPKNPYFLNMSTTSLPSLQLLSLASFYYLNVGDISAIYGVRGRIVS 550
551 MAQQLRLHRCPSAVLSVHSNPVLQKFEQSERRLLFWAIYYVDVFASLQLG 600
601 VPRLLKDFDIECALPISDVEYKDQLSMENEKADKKAKKIQLQGQVSSFSL 650
651 QIIRFAKILGNILDSIFKRGMMDERITSEVALVHENALDNWRNQLPEMYY 700
701 FQITVNGTVNLDEIRATNQRNTETKFDKKDIILFEKKILLLFYFLAKSMI 750
751 HLPVIATKPLPKNVDNATKKKQSMFNNDSKGATNQDHMILDVDMTSPAIR 800
801 TSSSYIILQQATNATLTIFQAINSMYLPLPLNVSRTLIRFSLLCARGSLE 850
851 YTKGGALFLDNKNLLLDTIKDIENDRLLDLPGIASWHTLKLFDMSINLLL 900
901 KAPNVKVERLDKFLEKKLNYYNRLMGLPPATTTSLKPLFGSQSKNSLENR 950
951 QRTPNVKRENPEHEYLYGNDSNNNNNSEAGHSPMTNTTNGNKRLKYEKDA 1000
1001 KRNAKDGGISKGENAHNFQNDTKKNMSTSNLFPFSFSNTDLTALFTHPEG 1050
1051 PNCTNTNNGNVDVCNRASTDATDANIENLSFLNMAPFLQTGNSNIGQNTI 1100
1101 ENKPMHMDAIFSLPSNLDLMKDNMDSKPEQLEPVIKQNPENSKNNQFHQK 1150
1151 GKSTNMEKNNLSFNNKSNYSLTKLMRLLNNDNSFSNISINNFLYQNDQNS 1200
1201 ASADPGTNKKAVTNAGANFKPPSTGSNTSQGSILGSTKHGMDNCDFNDLG 1250
1251 NFNNFMTNVNYSGVDYDYIVDASLGLAPLLVDTPDISNTNTTSTTSNRSK 1300
1301 NSIILDTTFNDDLDRSRMNAREVLNPTDSILSQGMVSSVSTRNTSNQRSL 1350
1351 SSGNDSKGDSSSQENSKSATGNQLDTPSTLFQMRRTSSGPSASHRGPRRP 1400
1401 QKNRYNTDRSKSSGGGSSNTDNVSDLFQWQNAK 1433
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.