SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P39806 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MRSDFKDNHQETINKMIQFGTVKYGIVKQLKDPARSAEKDIASDQEDNGA    50
51 CSPLTTANASASAGNSPCPSRSPQQHSEDEREPEQVSEQELVPEVSAQSE 100
101 SEIGEEIENNADETNADHNHNNNNNNKLVMTKPPVEHEVEQNANLNASMP 150
151 NSTTPPATNAVIAGARAQQFGATPVTLEAIQNMQMAIAQFAAKTIANGAS 200
201 GTDNEAAMKQLAFLQQTLFNLQQQQLFQLQLIQQLQSQLALNQVKQNDDE 250
251 ADEELEPEEREDGETDTYEEEERIADMELRQKAEARMAESKARQHLINAG 300
301 VPYANAPDPSHQPPHRCRLRRLKRKREEDASAKSSGASAKIFGEQESSQD 350
351 ALNKLKEMENMPLPFGADLSSSIITNHDDLPEPNSLDLLQKRTQEVLDSA 400
401 SQGILANNMADDFAFGDKSSDGKGRNEPFFKHRCRYCGKVFGSDSALQIH 450
451 IRSHTGERPFKCNVCGSRFTTKGNLKVHFQRHAQKFPHVPMNATPIPEHM 500
501 DKFHPPLLDQMSPDSSPTQSPAPATGLPPPSTSTLTQMQPSMSFASSPAF 550
551 PGLPGIYRPPMELLKSLGATAGSTAGLPHPFFPQMPGLGAALKHTHDQSQ 600
601 DMPTDLRKSSGPSSPHEEEDNIAARLPVKSELMEEEKTEHTMEAATRESA 650
651 EMEPLPLEVRIKEERIDEDQMHLQEGMQKPEPLTAYATPHPQQCLIPTTH 700
701 AAAKSPRSLPLQCHARLSLWCSHPTTSNHACAVLTGSQTHLDQLPTPDNV 750
751 PPTMPQREDFFAERFPLNFTSKTDDHSPIRSPAGHAHAHIPRSPFFNPIK 800
801 HEMAAFVPRPHSNDNSWENFIEVSNTSETMKLKELMKNKKISDPNQCVVC 850
851 DRVLSCKSALQMHYRTHTGERPFKCRICGRAFTTKGNLKTHMAVHKIRPP 900
901 MRNFHQCPVCHKKYSNALVLQQHIRLHTGEPTDLTPEQIQAAEIRDPPPS 950
951 MMPGHFMNPFAAAAFHFGAMPGGGAGGPPGATGMPGGPHNGTLGSESSQG 1000
1001 DLDDNMDCGDGDDFDDISSEHLSNSNDPAATSDRRSSDDFKSLLFEQKLR 1050
1051 IDPTGVVNINSHQRPHSAASNPNSIGSASASPSAPTSPSSQPKPSCSPVR 1100
1101 SSCSPVRSVSETSQGALDLTPRALPPPLASSSSRSPYRQLLSVRRRPLAR 1150
1151 SVSSHRCVVPMVRALLSSQLPPSVGIDCLPPGLQHHLQQQHQHLMQQQXA 1200
1201 VAAAAAAQHHHHQMQQHAAALHQHQEHLRREAQEVQQKAAQEVQQKAAAA 1250
1251 AAAAAAAQRQESPQPPPRSGESSVGPPAQPNPLISARPPFGMFPNLPIFP 1300
1301 PATTQNMCNAMNQIAQSVMPAAPFNPLALSGVRGSTTCGICYKTFPCHSA 1350
1351 LEIHYRSHTKERPFKCNICDRGFTTKGNLKQHMLTHKIRDMEQETFRNRA 1400
1401 VK 1402

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.