SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P39993 from www.uniprot.org...

The NucPred score for your sequence is 0.74 (see score help below)

   1  MSDREFVTVDPVTIIIKECINLSTAMRKYSKFTSQSGVAALLGGGSEIFS    50
51 NQDDYLAHTFNNLNTNKHNDPFLSGFIQLRLMLNKLKNLDNIDSLTILQP 100
101 FLLIVSTSSISGYITSLALDSLQKFFTLNIINESSQNYIGAHRATVNALT 150
151 HCRFEGSQQLSDDSVLLKVVFLLRSIVDSPYGDLLSNSIIYDVLQTILSL 200
201 ACNNRRSEVLRNAAQSTMIAVTVKIFSKLKTIEPVNVNQIYINDESYTND 250
251 VLKADTIGTNVESKEEGSQEDPIGMKVNNEEAISEDDGIEEEHIHSEKST 300
301 NGAEQLDIVQKTTRSNSRIQAYADDNYGLPVVRQYLNLLLSLIAPENELK 350
351 HSYSTRIFGLELIQTALEISGDRLQLYPRLFTLISDPIFKSILFIIQNTT 400
401 KLSLLQATLQLFTTLVVILGNNLQLQIELTLTRIFSILLDDGTANNSSSE 450
451 NKNKPSIIKELLIEQISILWTRSPSFFTSTFINFDCNLDRADVSINFLKA 500
501 LTKLALPESALTTTESVPPICLEGLVSLVDDMFDHMKDIDREEFGRQKNE 550
551 MEILKKRDRKTEFIECTNAFNEKPKKGIPMLIEKGFIASDSDKDIAEFLF 600
601 NNNNRMNKKTIGLLLCHPDKVSLLNEYIRLFDFSGLRVDEAIRILLTKFR 650
651 LPGESQQIERIIEAFSSAYCENQDYDPSKISDNAEDDISTVQPDADSVFI 700
701 LSYSIIMLNTDLHNPQVKEHMSFEDYSGNLKGCCNHKDFPFWYLDRIYCS 750
751 IRDKEIVMPEEHHGNEKWFEDAWNNLISSTTVITEIKKDTQSVMDKLTPL 800
801 ELLNFDRAIFKQVGPSIVSTLFNIYVVASDDHISTRMITSLDKCSYISAF 850
851 FDFKDLFNDILNSIAKGTTLINSSHDDELSTLAFEYGPMPLVQIKFEDTN 900
901 TEIPVSTDAVRFGRSFKGQLNTVVFFRIIRRNKDPKIFSKELWLNIVNII 950
951 LTLYEDLILSPDIFPDLQKRLKLSNLPKPSPEISINKSKESKGLLSTFAS 1000
1001 YLKGDEEPTEEEIKSSKKAMECIKSSNIAASVFGNESNITADLIKTLLDS 1050
1051 AKTEKNADNSRYFEAELLFIIELTIALFLFCKEEKELGKFILQKVFQLSH 1100
1101 TKGLTKRTVRRMLTYKILLISLCADQTEYLSKLINDELLKKGDIFTQKFF 1150
1151 ATNQGKEFLKRLFSLTESEFYRGFLLGNENFWKFLRKVTAMKEQSESIFE 1200
1201 YLNESIKTDSNILTNENFMWVLGLLDEISSMGAVGNHWEIEYKKLTESGH 1250
1251 KIDKENPYKKSIELSLKSIQLTSHLLEDNNDLRKNEIFAIIQALAHQCIN 1300
1301 PCKQISEFAVVTLEQTLINKIEIPTNEMESVEELIEGGLLPLLNSSETQE 1350
1351 DQKILISSILTIISNVYLHYLKLGKTSNETFLKILSIFNKFVEDSDIEKK 1400
1401 LQQLILDKKSIEKGNGSSSHGSAHEQTPESNDVEIEATAPIDDNTDDDNK 1450
1451 PKLSDVEKD 1459

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.