SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P40105 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MVYTLFQVHTLKFNRKDYDTLSLFYLNRGYYNELSFRVLERCHEKASARP    50
51 NDSSTMRTFTDFVSGAPIVRSLQKSTIRKYGYNLAPYMFLLLHVDELSIF 100
101 SAYQASLPGEKKVDTERLKRDLCPRKPTEIKYFSQICNDMMNKKDRLGDI 150
151 LHIILRACALNFGAGPRGGAGDEEDRSITNEEPIIPSVDEHGLKVCKLRS 200
201 PNTPRRLRKTLDAVKALLVSSCACTARDLDIFDDNNGVAMWKWIKILYHE 250
251 VAQETALKDSYRITLVPSSDGVSVCGKLFNREYVRGFYFACKAQFDNLWE 300
301 ELNDCFYMPTVVDIASLILRNREVLFREPKRGIDEYLENDSFLQMIPVKY 350
351 REIVLPKLRRDTNKMTAALKNKVTVAIDELTVPLMWMIHFAVGYPYRYPE 400
401 LQLLAFAGPQRNVYVDDTTRRIQLYTDYNKNGSSEPRLKTLDGLTSDYVF 450
451 YFVTVLRQMQICALGNSYDAFNHDPWMDVVGFEDPDQVTNRDISRIVLYS 500
501 YMFLNTAKGCLVEYATFRQYMRELPKNAPQKLNFREMRQGLIALGRHCVG 550
551 SRFETDLYESATSELMANHSVQTGRNIYGVDSFSLTSVSGTTATLLQERA 600
601 SERWIQWLGLESDYHCSFSSTRNAEDVVAGEAASSDHHQKISRVTRKRPR 650
651 EPKSTNDILVAGQKLFGSSFEFRDLHQLRLCHEIYMADTPSVAVQAPPGY 700
701 GKTELFHLPLIALASKGDVKYVSFLFVPYTVLLANCMIRLSRCGCLNVAP 750
751 VRNFIEEGCDGVTDLYVGIYDDLASTNFTDRIAAWENIVECTFRTNNVKL 800
801 GYLIVDEFHNFETEVYRQSQFGGITNLDFDAFEKAIFLSGTAPEAVADAA 850
851 LQRIGLTGLAKKSMDINELKRSEDLSRGLSSYPTRMFNLIKEKSEVPLGH 900
901 VHKIWKKVESQPEEALKLLLALFEIEPESKAIVVASTTNEVEELACSWRK 950
951 YFRVVWIHGKLGAAEKVSRTKEFVTDGSMRVLIGTKLVTEGIDIKQLMMV 1000
1001 IMLDNRLNIIELIQGVGRLRDGGLCYLLSRKNSWAARNRKGELPPIKEGC 1050
1051 ITEQVREFYGLESKKGKKGQHVGCCGSRTDLSADTVELIERMDRLAEKQA 1100
1101 TASMSIVALPSSFQESNSSDRCRKYCSSDEDSDTCIHGSANASTNATTNS 1150
1151 STNATTTASTNVRTSATTTASINVRTSATTTESTNSSTNATTTASTNVRT 1200
1201 SATTTASINVRTSATTTESTNSNTSATTTESTDSNTSATTTESTDSNTSA 1250
1251 TTTASTNSSTNATTTASTNSSTNATTTESTNASAKEDANKDGNAEDNRFH 1300
1301 PVTDINKESYKRKGSQMVLLERKKLKAQFPNTSENMNVLQFLGFRSDEIK 1350
1351 HLFLYGIDVYFCPEGVFTQYGLCKGCQKMFELCVCWAGQKVSYRRMAWEA 1400
1401 LAVERMLRNDEEYKEYLEDIEPYHGDPVGYLKYFSVKRGEIYSQIQRNYA 1450
1451 WYLAITRRRETISVLDSTRGKQGSQVFRMSGRQIKELYYKVWSNLRESKT 1500
1501 EVLQYFLNWDEKKCREEWEAKDDTVFVEALEKVGVFQRLRSMTSAGLQGP 1550
1551 QYVKLQFSRHHRQLRSRYELSLGMHLRDQLALGVTPSKVPHWTAFLSMLI 1600
1601 GLFCNKTFRQKLEYLLEQISEVWLLPHWLDLANVEVLAADNTRVPLYMLM 1650
1651 VAVHKELDSDDVPDGRFDILLCRDSSREVGE 1681

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.