SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P40450 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MDSSPNKKTYRYPRRSLSLHARDRVSEARKLEELNLNDGLVAAGLQLVGV    50
51 ALEKQGTGSHIYMKQKNFSANDVSSSPMVSEEVNGSEMDFNPKCMPQDAS 100
101 LVERMFDELLKDGTFFWGAAYKNLQNISLRRKWLLICKIRSSNHWGKKKV 150
151 TSSTTYSTHLATNELAENAHFLDGLVRNLSTGGMKLSKALYKLEKFLRKQ 200
201 SFLQLFLKDEIYLTTLIEKTLPLISKELQFVYLRCFKILMNNPLARIRAL 250
251 HSEPLIRWFTELLTDQNSNLKCQLLSMELLLLLTYVEGSTGCELIWDQLS 300
301 ILFTDWLEWFDKILADDIAIHSSLYLNWNQLKIDYSTTFLLLINSILQGF 350
351 NNKTALEILNFLKKNNIHNTITFLELAYKDDPNSVVIMEQIKQFKSKESA 400
401 IFDSMIKTTNDTNSLHPTKDIARIESEPLCLENCLLLKAKDSPVEAPINE 450
451 IIQSLWKILDSQKPYSESIKLLKLINSLLFYLIDSFQVSTNPSFDETLES 500
501 AENVDYVFQDSVNKLLDSLQSDEIARRAVTEIDDLNAKISHLNEKLNLVE 550
551 NHDKDHLIAKLDESESLISLKTKEIENLKLQLKATKKRLDQITTHQRLYD 600
601 QPPSLASSNLSIAGSIIKNNSHGNIIFQNLAKKQQQQQKISLPKRSTSLL 650
651 KSKRVTSLSSYLTDANNENESQNESEDKSKDSLFQRSTSTINFNIPSMKN 700
701 ITNMQNVSLNSILSELEFSNSLGTQPNYQSSPVLSSVSSSPKLFPRLSSD 750
751 SLDNGIQLVPEVVKLPQLPPPPPPPPPPPLPQSLLTEAEAKPDGVSCIAA 800
801 PAPPPLPDLFKTKTCGAVPPPPPPPPLPESLSMNKGPSNHDLVTPPAPPL 850
851 PNGLLSSSSVSINPTTTDLKPPPTEKRLKQIHWDKVEDIKDTLWEDTFQR 900
901 QETIKELQTDGIFSQIEDIFKMKSPTKIANKRNAESSIALSSNNGKSSNE 950
951 LKKISFLSRDLAQQFGINLHMFSQLSDMEFVMKVLNCDNDIVQNVNILKF 1000
1001 FCKEELVNIPKSMLNKYEPYSQGKDGKAVSDLQRADRIFLELCINLRFYW 1050
1051 NARSKSLLTLSTYERDYYDLIFKLQKIDDAISHLNRSPKFKSLMFIITEI 1100
1101 GNHMNKRIVKGIKLKSLTKLAFVRSSIDQNVSFLHFIEKVIRIKYPDIYG 1150
1151 FVDDLKNIEDLGKISLEHVESECHEFHKKIEDLVTQFQVGKLSKEENLDP 1200
1201 RDQIIKKVKFKINRAKTKSELLIGQCKLTLIDLNKLMKYYGEDPKDKESK 1250
1251 NEFFQPFIEFLAMFKKCAKENIEKEEMERVYEQRKSLLDMRTSSNKKSNG 1300
1301 SDENDGEKVNRDAVDLLISKLREVKKDPEPLRRRKSTKLNEIAINVHEGD 1350
1351 VKTRKDEDHVLLERTHAMLNDIQNI 1375

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.