| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P40457 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MEDKISEFLNVPFESLQGVTYPVLRKLYKKIAKFERSEEEVTKLNVLVDE 50
51 IKSQYYSRISKLKQLLDESSEQKNTAKEELNGLKDQLNEERSRYRREIDA 100
101 LKKQLHVSHEAMREVNDEKRVKEEYDIWQSRDQGNDSLNDDLNKENKLLR 150
151 RKLMEMENILQRCKSNAISLQLKYDTSVQEKELMLQSKKLIEEKLSSFSK 200
201 KTLTEEVTKSSHVENLEEKLYQMQSNYESVFTYNKFLLNQNKQLSQSVEE 250
251 KVLEMKNLKDTASVEKAEFSKEMTLQKNMNDLLRSQLTSLEKDCSLRAIE 300
301 KNDDNSCRNPEHTDVIDELIDTKLRLEKSKNECQRLQNIVMDCTKEEEAT 350
351 MTTSAVSPTVGKLFSDIKVLKRQLIKERNQKFQLQNQLEDFILELEHKTP 400
401 ELISFKERTKSLEHELKRSTELLETVSLTKRKQEREITSLRQKINGCEAN 450
451 IHSLVKQRLDLARQVKLLLLNTSAIQETASPLSQDELISLRKILESSNIV 500
501 NENDSQAIITERLVEFSNVNELQEKNVELLNCIRILADKLENYEGKQDKT 550
551 LQKVENQTIKEAKDAIIELENINAKMETRINILLRERDSYKLLASTEENK 600
601 ANTNSVTSMEAAREKKIRELEAELSSTKVENSAIIQNLRKELLIYKKSQC 650
651 KKKTTLEDFENFKGLAKEKERMLEEAIDHLKAELEKQKSWVPSYIHVEKE 700
701 RASTELSQSRIKIKSLEYEISKLKKETASFIPTKESLTRDFEQCCKEKKE 750
751 LQMRLKESEISHNENKMDFSSKEGQYKAKIKELENNLERLRSDLQSKIQE 800
801 IESIRSCKDSQLKWAQNTIDDTEMKMKSLLTELSNKETTIEKLSSEIENL 850
851 DKELRKTKFQYKFLDQNSDASTLEPTLRKELEQIQVQLKDANSQIQAYEE 900
901 IISSNENALIELKNELAKTKENYDAKIELEKKEKWAREEDLSRLRGELGE 950
951 IRALQPKLKEGALHFVQQSEKLRNEVERIQKMIEKIEKMSTIVQLCKKKE 1000
1001 MSQYQSTMKENKDLSELVIRLEKDAADCQAELTKTKSSLYSAQDLLDKHE 1050
1051 RKWMEEKADYERELISNIEQTESLRVENSVLIEKVDDTAANNGDKDHLKL 1100
1101 VSLFSNLRHERNSLETKLTTCKRELAFVKQKNDSLEKTINDLQRTQTLSE 1150
1151 KEYQCSAVIIDEFKDITKEVTQVNILKENNAILQKSLKNVTEKNREIYKQ 1200
1201 LNDRQEEISRLQRDLIQTKEQVSINSNKILVYESEMEQCKQRYQDLSQQQ 1250
1251 KDAQKKDIEKLTNEISDLKGKLSSAENANADLENKFNRLKKQAHEKLDAS 1300
1301 KKQQAALTNELNELKAIKDKLEQDLHFENAKVIDLDTKLKAHELQSEDVS 1350
1351 RDHEKDTYRTLMEEIESLKKELQIFKTANSSSDAFEKLKVNMEKEKDRII 1400
1401 DERTKEFEKKLQETLNKSTSSEAEYSKDIETLKKEWLKEYEDETLRRIKE 1450
1451 AEENLKKRIRLPSEERIQKIISKRKEELEEEFRKKLKENAGSLTFLDNKG 1500
1501 SGEDAEEELWNSPSKGNSERPSAVAGFINQKNLKPQEQLKNVKNDVSFND 1550
1551 SQSMVTNKENNIVDSSAAGNKAIPTFSFGKPFFSSNTSSLQSFQNPFTAS 1600
1601 QSNINTNAPLRTLNIQPEVAVKAAINFSNVTDLTNNSTDGAKITEIGSTS 1650
1651 KRPIESGTSSDPDTKKVKESPANDQASNE 1679
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.