| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P40798 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MAEYWQQLTNGAGEAGPGNESSAMADCNGGHESAAVGGSCNRHSNNNYVN 50
51 FNQFIMQHNLGGGAPSNATSTMQHPVGSSYTNFSLGGGGGAFGLNPPVAS 100
101 ASTSHFANVSHQSPNFYSQAMIPTYQNGDGIARVTVTSSYGSVNPSNSNF 150
151 SSFYTPFGNNPFDFSASKLQASAPEFVPNFAKLSLEETPAAATTNGNSTA 200
201 SLETAINETRPRTLRAQEPAERGANNQCSNHNYERERERERDRDRDRERD 250
251 RDRDRDRDRDRDRDRDRDSRPGNTRQQRRSDYRDDREDRYERSDRRRPQK 300
301 QQRYDNHRSNKRRDDWNRNRDRINGFPRAVDDLDTSNESAHPSPEKQSQL 350
351 QQISPRRGPPLPPADNEKLSQREKLVRDIEQRRLECLVCVEAIKSHQPTW 400
401 SCRNCYHMLHLKCTITWASSSKSEVGWRCPACQNVLQDLPRDYLCFCGKL 450
451 KNPPVSRTELAHSCGEVCCRIEGCSHACTLLCHPGPCPPCQANVVRSCGC 500
501 GRSTKTMQCAMKEEVLCGEICDKLLNCGEHRCQAECHSGKCAACSEQVVQ 550
551 QCHCGKQERKVPCTRESQDKRTYSCKDSCGQPLPCGHHKCKDSCHAGSCR 600
601 PCKLSPEQITSCPCGKMPVPAGQRSSCLDPIPTCEGICSRTLRCGKPAHP 650
651 HQCGSKCHLGQCPPCPKQTGVKCRCGHMDQMIKCRQLCNRADDARCKRRC 700
701 TKKRSCGKHKCNVECCIDIDHDCPLPCNRTLSCGKHKCDQPCHRGNCPPC 750
751 YRSSFEELYCECGAEVIYPPVPCGTKKPICKLPCSRIHPCDHPPQHNCHS 800
801 GPTCPPCMIFTTKLCHGNHELRKTIPCSQPNFSCGMACGKPLPCGGHKCI 850
851 KPCHEGPCQSAGEICRQSCTKPRPTCGHKCAAACHEGACPETPCKELVEV 900
901 QCECGNRKQNRSCQELAREHSRIATIQLASSMAEMSRGNYMELSEILAPA 950
951 KKSNKTLDCNDECRLLERNRRLAAALSSGNSDTKQKCLTKYSEFVRGFAK 1000
1001 KNPALTKSVYETLTDLVKLAKESKQRSRSHSFPTMNREKRQLVHELCEVF 1050
1051 GIESVSYDKEPNRNVVATAHKDRCWFPATSIMEVLARESGQRRVPVPSNN 1100
1101 AWGLKK 1106
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.