SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P41110 from www.uniprot.org...

The NucPred score for your sequence is 0.95 (see score help below)

   1  MSGARTVSTPTPPQTGGGVEPQANGETPQVAVIVRSDDRSQGAIIGGRPG    50
51 LPGPEHSPSESQPSSPSPTPSPPPILEPGSEPNLAVLSLPGDTMTSGMIQ 100
101 MPVEEPAPISREAGEPYCLSPEPTPLAEPILEVEVTLSKPVPVSEFSSSP 150
151 IQVLTPLASHKMEIHEPNGVVPSEDLEPEVESSPELAPPPPPACLSESPV 200
201 PIAPTTQPEELLNGAPSPPAVDLSPVCEPEDQAKEDTASATPPAVPSATP 250
251 ATAPPATSPAQEEEGEEEEEEEEGEAGAAESDKGGEDLHPTESTPVPGHL 300
301 PQNVEAVAATQVAVSVPKRRRKIKELNKKEAVGDLLDAFKEVNPAVPEVE 350
351 NQPPAGNNPTPESEGSSGPSRPEEADETWDAKEDKIHNAENIQPGEQKYE 400
401 YKSDQWRPLNLEEKKRYDREFLLGFQFIFCQYAEAGGLPHISDVVLEKAN 450
451 KTPLRPLDPSRLSGINCGPDFTPSFANLGRPALSSRGPPRGGPGGELPRG 500
501 AAGLGPRRSLQPRPPKGARKLIASVIMTEDIKLNKAEKAWKPSSKRTAAD 550
551 KDRGEEDADGSKTQDLFRRVRSILNKLTPQMFQQLMKQVTQLAIDTEGAS 600
601 KGSLTSSLRRPFQNPTSQWPSQHVPLPHGAESATTEKPTVTVNFRKLLLN 650
651 RCQKEFEKDKDDDEVFEKKQKEMDEAATAEERERLKEELEEARDIARRCS 700
701 LGNIKFIGELFKLKMLTEAIMHDCVVKLLRHDEESLEFLCRLLTTIGKDL 750
751 DFEKAKPRMDQYFNQMEKIIKEKKTSSRIRFMLQDVLDLRQSNWVPRRGD 800
801 QGPKTIDQIHKEAEMEEHREHIKVQQLMAKGSDKRRGGPPGPPISRGLPL 850
851 VDDGGWNTVPISKGSRPIDTSRLTKITKPGSIDSNNQLFAPGGRLSWGKG 900
901 SSGSGAKPSDAASEVSRPATSTLNRFSALQQAVPTESTDNRRVVQRSSLS 950
951 RERGGKAGEPRRRLERSERGGDRGDRLDRARTPATKRSFSKEVEERSRER 1000
1001 PSQPEGLRKAASLTEDRDRGRDAAKREAALPPVSCAKAALSEEELEKKSK 1050
1051 AIIEEYLHLNDMKEAVQCVQELASPSLLFIFVRHGIESTLERSAIARERM 1100
1101 GQLLHQLLCAGHLSTAQYYQGLYEILELAEDMEIDIPHVWLYLAELVTPI 1150
1151 MQEGGVPMGELFREITKHLRPLGKAASLLLEILRLLCKSKGPKKVAYCGV 1200
1201 RLGSAGKNFCLEGQDVGAFITEQKVEYTLGEESEAPGQRALSSEELSRQL 1250
1251 EKVLKEGSSNQRVFDWIEANLSEQQIASNTLVRALMTAVCYSAIIFETPL 1300
1301 RVDVAVLKGDRICYRNTCVIAEGAARLYALQALVVTLEQPANLLRMFFDA 1350
1351 LYDEDVVKEEAFYSWESSKDPAEQQGKGVALKSVTAFFKWLREVEEEESD 1400
1401 HN 1402

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.