SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P41515 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MELSPLQPVNENMQMNKKKNEDAKKRLSIERIYQKKTQLEHILLRPDTYI    50
51 GSVELVTQQMWVYDEDVGINYREVTFVPGLYKIFDEILVNAADNKQRDPK 100
101 MSCIRVTIDPENNLISIWNNGKGIPVVEHKVEKMYVPALIFGQLLTSSNY 150
151 DDDEKKVTGGRNGYGAKLCNIFSTRFTVETASKEYKKMFKQTWMDNMGRA 200
201 GDMELKPFNGEDYTCITFQPDLSKFKMQSLDKDIVALMVRRAYDIAGSTK 250
251 DVKVFLNGNKLPVKGFRSYVDMYLKDKLDETGNALKVVHEQVNPRWEVCL 300
301 TMSEKGFQQISFVNSIATSKGGRHVDYVADQIVSKLVDVVKKKNKGGVAV 350
351 KAHQVKNHMWIFVNALIENPTFDSQTKENMTLQAKSFGSTCQLSEKFIKA 400
401 AIGCGIVESILNWVKFKAQIQLNKKCSAVKHNRIKGIPKLDDANDAGSRN 450
451 STECTLILTEGDSAKTLAVSGLGVVGRDKYGVFPLRGKILNVREASHKQI 500
501 MENAEINNIIKIVGLQYKKNYEDEDSLKTLRYGKIMIMTDQDQDGSHIKG 550
551 LLINFIHHNWPSLLRHRFLEEFITPIVKVSKNKQELAFYSLPEFEEWKSS 600
601 TPNHKKWKVKYYKGLGTSTSKEAKEYFADMKRHRIQFKYSGPEDDAAISL 650
651 AFSKKQVDDRKEWLTHFMEDRRQRKLLGLPEDYLYGQTTTYLTYNDFINK 700
701 ELILFSNSDNERSIPSMVDGLKPGQRKVLFTCFKRNDKREVKVAQLAGSV 750
751 AEMSSYHHGEMSLMMTIINLAQNFVGSNNLNLLQPIGQFGTRLHGGKDSA 800
801 SPRYIFTMLSPLTRLLFPPKDDHTLKFLYDDNQRVEPEWYIPIIPMVLIN 850
851 GAEGIGTGWSCKIPNFDIREVVNNIRRLLDGEEPLPMLPSYKNFKGTIEE 900
901 LASNQYVINGEVAILNSTTIEISELPIRTWTQTYKEQVLEPMLNGTEKTP 950
951 PLITDYREYHTDTTVKFVIKMTEEKLAEAERVGLHKVFKLQTSLTCNSMV 1000
1001 LFDHVGCLKKYDTVLDILKDFFELRLKYYGLRKEWLLGMLGAESAKLNNQ 1050
1051 ARFILEKIDGKIIIENKPKKELIKVLIQRGYDSDPVKAWKEAQQKVPDEE 1100
1101 ENEESDNENSDSVAESGPTFNYLLDMPLWYLTKEKKDELCKQRNEKEQEL 1150
1151 NTLKNKSPSDLWKEDLAVFIEELEVVEAKEKQDEQVGLPGKGGKAKGKKA 1200
1201 QMSEVLPSPHGKRVIPQVTMEMKAEAEKKIRKKIKSENVEGTPTENGLEL 1250
1251 GSLKQRIEKKQKKEPGAMTKKQTTLAFKPIKKGKKRNPWSDSESDMSSNE 1300
1301 SNVDVPPREKDPRRAATKAKFTMDLDSDEDFSGSDGKDEDEDFFPLDTTP 1350
1351 PKTKIPQKNTKKALKPQKSAMSGDPESDEKDSVPASPGPPAADLPADTEQ 1400
1401 LKPSSKQTVAVKKTATKSQSSTSTAGTKKRAVPKGSKSDSALNAHGPEKP 1450
1451 VPAKAKNSRKRKQSSSDDSDSDFEKVVSKVAASKKSKGENQDFRVDLDET 1500
1501 MVPRAKSGRAKKPIKYLEESDDDDLF 1526

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.