SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P42695 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MVALRGLGSGLQPWCPLDLRLEWVDTVWELDFTETEPLDPSIEAEIIETG    50
51 LAAFTKLYESLLPFATGEHGSMESIWTFFIENNVSHSTLVALFYHFVQIV 100
101 HKKNVSVQYREYGLHAAGLYFLLLEVPGSVANQVFHPVMFDKCIQTLKKS 150
151 WPQESNLNRKRKKEQPKSSQANPGRHRKRGKPPRREDIEMDEIIEEQEDE 200
201 NICFSARDLSQIRNAIFHLLKNFLRLLPKFSLKEKPQCVQNCIEVFVSLT 250
251 NFEPVLHECHVTQARALNQAKYIPELAYYGLYLLCSPIHGEGDKVISCVF 300
301 HQMLSVILMLEVGEGSHRAPLAVTSQVINCRNQAVQFISALVDELKESIF 350
351 PVVRILLQHICAKVVDKSEYRTFAAQSLVQLLSKLPCGEYAMFIAWLYKY 400
401 SRSSKIPHRVFTLDVVLALLELPEREVDNTLSLEHQKFLKHKFLVQEIMF 450
451 DRCLDKAPTVRSKALSSFAHCLELTVTSASESILELLINSPTFSVIESHP 500
501 GTLLRNSSAFSYQRQTSNRSEPSGEINIDSSGETVGSGERCVMAMLRRRI 550
551 RDEKTNVRKSALQVLVSILKHCDVSGMKEDLWILQDQCRDPAVSVRKQAL 600
601 QSLTELLMAQPRCVQIQKAWLRGVVPVVMDCESTVQEKALEFLDQLLLQN 650
651 IRHHSHFHSGDDSQVLAWALLTLLTTESQELSRYLNKAFHIWSKKEKFSP 700
701 TFINNVISHTGTEHSAPAWMLLSKIAGSSPRLDYSRIIQSWEKISSQQNP 750
751 NSNTLGHILCVIGHIAKHLPKSTRDKVTDAVKCKLNGFQWSLEVISSAVD 800
801 ALQRLCRASAETPAEEQELLTQVCGDVLSTCEHRLSNIVLKENGTGNMDE 850
851 DLLVKYIFTLGDIAQLCPARVEKRIFLLIQSVLASSADADHSPSSQGSSE 900
901 APASQPPPQVRGSVMPSVIRAHAIITLGKLCLQHEDLAKKSIPALVRELE 950
951 VCEDVAVRNNVIIVMCDLCIRYTIMVDKYIPNISMCLKDSDPFIRKQTLI 1000
1001 LLTNLLQEEFVKWKGSLFFRFVSTLIDSHPDIASFGEFCLAHLLLKRNPV 1050
1051 MFFQHFIECIFHFNNYEKHEKYNKFPQSEREKRLFSLKGKSNKERRMKIY 1100
1101 KFLLEHFTDEQRFNITSKICLSILACFADGILPLDLDASELLSDTFEVLS 1150
1151 SKEIKLLAMRSKPDKDLLMEEDDMALANVVMQEAQKKLISQVQKRNFIEN 1200
1201 IIPIIISLKTVLEKNKIPALRELMHYLREVMQDYRDELKDFFAVDKQLAS 1250
1251 ELEYDMKKYQEQLVQEQELAKHADVAGTAGGAEVAPVAQVALCLETVPVP 1300
1301 AGQENPAMSPAVSQPCTPRASAGHVAVSSPTPETGPLQRLLPKARPMSLS 1350
1351 TIAILNSVKKAVESKSRHRSRSLGVLPFTLNSGSPEKTCSQVSSYSLEQE 1400
1401 SNGEIEHVTKRAISTPEKSISDVTFGAGVSYIGTPRTPSSAKEKIEGRSQ 1450
1451 GNDILCLSLPDKPPPQPQQWNVRSPARNKDTPACSRRSLRKTPLKTAN 1498

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.