 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P42858 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQ 50
51 LPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKKELSATKKDRV 100
101 NHCLTICENIVAQSVRNSPEFQKLLGIAMELFLLCSDDAESDVRMVADEC 150
151 LNKVIKALMDSNLPRLQLELYKEIKKNGAPRSLRAALWRFAELAHLVRPQ 200
201 KCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFGNFANDNEIKV 250
251 LLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV 300
301 PVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPS 350
351 AEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGG 400
401 IGQLTAAKEESGGRSRSGSIVELIAGGGSSCSPVLSRKQKGKVLLGEEEA 450
451 LEDDSESRSDVSSSALTASVKDEISGELAASSGVSTPGSAGHDIITEQPR 500
501 SQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAVPSDPAMDLND 550
551 GTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQD 600
601 EDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLR 650
651 DEATEPGDQENKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNV 700
701 LVPDRDVRVSVKALALSCVGAAVALHPESFFSKLYKVPLDTTEYPEEQYV 750
751 SDILNYIDHGDPQVRGATAILCGTLICSILSRSRFHVGDWMGTIRTLTGN 800
801 TFSLADCIPLLRKTLKDESSVTCKLACTAVRNCVMSLCSSSYSELGLQLI 850
851 IDVLTLRNSSYWLVRTELLETLAEIDFRLVSFLEAKAENLHRGAHHYTGL 900
901 LKLQERVLNNVVIHLLGDEDPRVRHVAAASLIRLVPKLFYKCDQGQADPV 950
951 VAVARDQSSVYLKLLMHETQPPSHFSVSTITRIYRGYNLLPSITDVTMEN 1000
1001 NLSRVIAAVSHELITSTTRALTFGCCEALCLLSTAFPVCIWSLGWHCGVP 1050
1051 PLSASDESRKSCTVGMATMILTLLSSAWFPLDLSAHQDALILAGNLLAAS 1100
1101 APKSLRSSWASEEEANPAATKQEEVWPALGDRALVPMVEQLFSHLLKVIN 1150
1151 ICAHVLDDVAPGPAIKAALPSLTNPPSLSPIRRKGKEKEPGEQASVPLSP 1200
1201 KKGSEASAASRQSDTSGPVTTSKSSSLGSFYHLPSYLKLHDVLKATHANY 1250
1251 KVTLDLQNSTEKFGGFLRSALDVLSQILELATLQDIGKCVEEILGYLKSC 1300
1301 FSREPMMATVCVQQLLKTLFGTNLASQFDGLSSNPSKSQGRAQRLGSSSV 1350
1351 RPGLYHYCFMAPYTHFTQALADASLRNMVQAEQENDTSGWFDVLQKVSTQ 1400
1401 LKTNLTSVTKNRADKNAIHNHIRLFEPLVIKALKQYTTTTCVQLQKQVLD 1450
1451 LLAQLVQLRVNYCLLDSDQVFIGFVLKQFEYIEVGQFRESEAIIPNIFFF 1500
1501 LVLLSYERYHSKQIIGIPKIIQLCDGIMASGRKAVTHAIPALQPIVHDLF 1550
1551 VLRGTNKADAGKELETQKEVVVSMLLRLIQYHQVLEMFILVLQQCHKENE 1600
1601 DKWKRLSRQIADIILPMLAKQQMHIDSHEALGVLNTLFEILAPSSLRPVD 1650
1651 MLLRSMFVTPNTMASVSTVQLWISGILAILRVLISQSTEDIVLSRIQELS 1700
1701 FSPYLISCTVINRLRDGDSTSTLEEHSEGKQIKNLPEETFSRFLLQLVGI 1750
1751 LLEDIVTKQLKVEMSEQQHTFYCQELGTLLMCLIHIFKSGMFRRITAAAT 1800
1801 RLFRSDGCGGSFYTLDSLNLRARSMITTHPALVLLWCQILLLVNHTDYRW 1850
1851 WAEVQQTPKRHSLSSTKLLSPQMSGEEEDSDLAAKLGMCNREIVRRGALI 1900
1901 LFCDYVCQNLHDSEHLTWLIVNHIQDLISLSHEPPVQDFISAVHRNSAAS 1950
1951 GLFIQAIQSRCENLSTPTMLKKTLQCLEGIHLSQSGAVLTLYVDRLLCTP 2000
2001 FRVLARMVDILACRRVEMLLAANLQSSMAQLPMEELNRIQEYLQSSGLAQ 2050
2051 RHQRLYSLLDRFRLSTMQDSLSPSPPVSSHPLDGDGHVSLETVSPDKDWY 2100
2101 VHLVKSQCWTRSDSALLEGAELVNRIPAEDMNAFMMNSEFNLSLLAPCLS 2150
2151 LGMSEISGGQKSALFEAAREVTLARVSGTVQQLPAVHHVFQPELPAEPAA 2200
2201 YWSKLNDLFGDAALYQSLPTLARALAQYLVVVSKLPSHLHLPPEKEKDIV 2250
2251 KFVVATLEALSWHLIHEQIPLSLDLQAGLDCCCLALQLPGLWSVVSSTEF 2300
2301 VTHACSLIYCVHFILEAVAVQPGEQLLSPERRTNTPKAISEEEEEVDPNT 2350
2351 QNPKYITAACEMVAEMVESLQSVLALGHKRNSGVPAFLTPLLRNIIISLA 2400
2401 RLPLVNSYTRVPPLVWKLGWSPKPGGDFGTAFPEIPVEFLQEKEVFKEFI 2450
2451 YRINTLGWTSRTQFEETWATLLGVLVTQPLVMEQEESPPEEDTERTQINV 2500
2501 LAVQAITSLVLSAMTVPVAGNPAVSCLEQQPRNKPLKALDTRFGRKLSII 2550
2551 RGIVEQEIQAMVSKRENIATHHLYQAWDPVPSLSPATTGALISHEKLLLQ 2600
2601 INPERELGSMSYKLGQVSIHSVWLGNSITPLREEEWDEEEEEEADAPAPS 2650
2651 SPPTSPVNSRKHRAGVDIHSCSQFLLELYSRWILPSSSARRTPAILISEV 2700
2701 VRSLLVVSDLFTERNQFELMYVTLTELRRVHPSEDEILAQYLVPATCKAA 2750
2751 AVLGMDKAVAEPVSRLLESTLRSSHLPSRVGALHGVLYVLECDLLDDTAK 2800
2801 QLIPVISDYLLSNLKGIAHCVNIHSQQHVLVMCATAFYLIENYPLDVGPE 2850
2851 FSASIIQMCGVMLSGSEESTPSIIYHCALRGLERLLLSEQLSRLDAESLV 2900
2901 KLSVDRVNVHSPHRAMAALGLMLTCMYTGKEKVSPGRTSDPNPAAPDSES 2950
2951 VIVAMERVSVLFDRIRKGFPCEARVVARILPQFLDDFFPPQDIMNKVIGE 3000
3001 FLSNQQPYPQFMATVVYKVFQTLHSTGQSSMVRDWVMLSLSNFTQRAPVA 3050
3051 MATWSLSCFFVSASTSPWVAAILPHVISRMGKLEQVDVNLFCLVATDFYR 3100
3101 HQIEEELDRRAFQSVLEVVAAPGSPYHRLLTCLRNVHKVTTC 3142
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.