 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P42859 from www.uniprot.org...
The NucPred score for your sequence is 0.74 (see score help below)
1 MATLEKLMKAFESLKSFQQQQQQQPPPQAPPPPPPPPPQPPQPPPQGQPP 50
51 PPPPPLPGPAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSLRNSPEF 100
101 QKLLGIAMELFLLCSNDAESDVRMVADECLNKVIKALMDSNLPRLQLELY 150
151 KEIKKNGAPRSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPE 200
201 ESVQETLAAAVPKIMASFGNFANDNEIKVLLKAFIANLKSSSPTVRRTAA 250
251 GSAVSICQHSRRTQYFYNWLLNVLLGLLVPMEEEHSTLLILGVLLTLRCL 300
301 VPLLQQQVKDTSLKGSFGVTRKEMEVSPSTEQLVQVYELTLHHTQHQDHN 350
351 VVTGALELLQQLFRTPPPELLQALTTPGGLGQLTLVQEEARGRGRSGSIV 400
401 ELLAGGGSSCSPVLSRKQKGKVLLGEEEALEDDSESRSDVSSSAFAASVK 450
451 SEIGGELAASSGVSTPGSVGHDIITEQPRSQHTLQADSVDLSGCDLTSAA 500
501 TDGDEEDILSHSSSQFSAVPSDPAMDLNDGTQASSPISDSSQTTTEGPDS 550
551 AVTPSDSSEIVLDGADSQYLGMQIGQPQEDDEEGAAGVLSGEVSDVFRNS 600
601 SLALQQAHLLERMGHSRQPSDSSIDKYVTRDEVAEASDPESKPCRIKGDI 650
651 GQPNDDDSAPLVHCVRLLSASFLLTGEKKALVPDRDVRVSVKALALSCIG 700
701 AAVALHPESFFSRLYKVPLNTTESTEEQYVSDILNYIDHGDPQVRGATAI 750
751 LCGTLVYSILSRSRLRVGDWLGNIRTLTGNTFSLVDCIPLLQKTLKDESS 800
801 VTCKLACTAVRHCVLSLCSSSYSDLGLQLLIDMLPLKNSSYWLVRTELLD 850
851 TLAEIDFRLVSFLEAKAESLHRGAHHYTGFLKLQERVLNNVVIYLLGDED 900
901 PRVRHVAATSLTRLVPKLFYKCDQGQADPVVAVARDQSSVYLKLLMHETQ 950
951 PPSHFSVSTITRIYRGYSLLPSITDVTMENNLSRVVAAVSHELITSTTRA 1000
1001 LTFGCCEALCLLSAAFPVCTWSLGWHCGVPPLSASDESRKSCTVGMASMI 1050
1051 LTLLSSAWFPLDLSAHQDALILAGNLLAASAPKSLRSSWTSEEEANSAAT 1100
1101 RQEEIWPALGDRTLVPLVEQLFSHLLKVINICAHVLDDVTPGPAIKAALP 1150
1151 SLTNPPSLSPIRRKGKEKEPGEQASTPMSPKKVGEASAASRQSDTSGPVT 1200
1201 ASKSSSLGSFYHLPSYLKLHDVLKATHANYKVTLDLQNSTEKFGGFLRSA 1250
1251 LDVLSQILELATLQDIGKCVEEVLGYLKSCFSREPMMATVCVQQLLKTLF 1300
1301 GTNLASQFDGLSSNPSKSQCRAQRLGSSSVRPGLYHYCFMAPYTHFTQAL 1350
1351 ADASLRNMVQAEQERDASGWFDVLQKVSAQLKTNLTSVTKNRADKNAIHN 1400
1401 HIRLFEPLVIKALKQYTTTTSVQLQKQVLDLLAQLVQLRVNYCLLDSDQV 1450
1451 FIGFVLKQFEYIEVGQFRESEAIIPNIFFFLVLLSYERYHSKQIIGIPKI 1500
1501 IQLCDGIMASGRKAVTHAIPALQPIVHDLFVLRGTNKADAGKELETQKEV 1550
1551 VVSMLLRLIQYHQVLEMFILVLQQCHKENEDKWKRLSRQVADIILPMLAK 1600
1601 QQMHIDSHEALGVLNTLFEILAPSSLRPVDMLLRSMFITPSTMASVSTVQ 1650
1651 LWISGILAILRVLISQSTEDIVLCRIQELSFSPHLLSCPVINRLRGGGGN 1700
1701 VTLGECSEGKQKSLPEDTFSRFLLQLVGILLEDIVTKQLKVDMSEQQHTF 1750
1751 YCQELGTLLMCLIHIFKSGMFRRITAAATRLFTSDGCEGSFYTLESLNAR 1800
1801 VRSMVPTHPALVLLWCQILLLINHTDHRWWAEVQQTPKRHSLSCTKSLNP 1850
1851 QKSGEEEDSGSAAQLGMCNREIVRRGALILFCDYVCQNLHDSEHLTWLIV 1900
1901 NHIQDLISLSHEPPVQDFISAIHRNSAASGLFIQAIQSRCENLSTPTTLK 1950
1951 KTLQCLEGIHLSQSGAVLTLYVDRLLGTPFRALARMVDTLACRRVEMLLA 2000
2001 ANLQSSMAQLPEEELNRIQEHLQNSGLAQRHQRLYSLLDRFRLSTVQDSL 2050
2051 SPLPPVTSHPLDGDGHTSLETVSPDKDWYLQLVRSQCWTRSDSALLEGAE 2100
2101 LVNRIPAEDMNDFMMSSEFNLSLLAPCLSLGMSEIANGQKSPLFEAARGV 2150
2151 ILNRVTSVVQQLPAVHQVFQPFLPIEPTAYWNKLNDLLGDTTSYQSLTIL 2200
2201 ARALAQYLVVLSKVPAHLHLPPEKEGDTVKFVVMTVEALSWHLIHEQIPL 2250
2251 SLDLQAGLDCCCLALQVPGLWGVLSSPEYVTHACSLIHCVRFILEAIAVQ 2300
2301 PGDQLLGPESRSHTPRAVRKEEVDSDIQNLSHVTSACEMVADMVESLQSV 2350
2351 LALGHKRNSTLPSFLTAVLKNIVISLARLPLVNSYTRVPPLVWKLGWSPK 2400
2401 PGGDFGTVFPEIPVEFLQEKEILKEFIYRINTLGWTNRTQFEETWATLLG 2450
2451 VLVTQPLVMEQEESPPEEDTERTQIHVLAVQAITSLVLSAMTVPVAGNPA 2500
2501 VSCLEQQPRNKPLKALDTRFGRKLSMIRGIVEQEIQEMVSQRENTATHHS 2550
2551 HQAWDPVPSLLPATTGALISHDKLLLQINPEREPGNMSYKLGQVSIHSVW 2600
2601 LGNNITPLREEEWDEEEEEESDVPAPTSPPVSPVNSRKHRAGVDIHSCSQ 2650
2651 FLLELYSRWILPSSAARRTPVILISEVVRSLLVVSDLFTERTQFEMMYLT 2700
2701 LTELRRVHPSEDEILIQYLVPATCKAAAVLGMDKTVAEPVSRLLESTLRS 2750
2751 SHLPSQIGALHGILYVLECDLLDDTAKQLIPVVSDYLLSNLKGIAHCVNI 2800
2801 HSQQHVLVMCATAFYLMENYPLDVGPEFSASVIQMCGVMLSGSEESTPSI 2850
2851 IYHCALRGLERLLLSEQLSRLDTESLVKLSVDRVNVQSPHRAMAALGLML 2900
2901 TCMYTGKEKASPGRASDPSPATPDSESVIVAMERVSVLFDRIRKGFPCEA 2950
2951 RVVARILPQFLDDFFPPQDVMNKVIGEFLSNQQPYPQFMATVVYKVFQTL 3000
3001 HSAGQSSMVRDWVMLSLSNFTQRTPVAMAMWSLSCFLVSASTSPWVSAIL 3050
3051 PHVISRMGKLEQVDVNLFCLVATDFYRHQIEEEFDRRAFQSVFEVVAAPG 3100
3101 SPYHRLLACLQNVHKVTTC 3119
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.