 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P43146 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MENSLRCVWVPKLAFVLFGASLFSAHLQVTGFQIKAFTALRFLSEPSDAV 50
51 TMRGGNVLLDCSAESDRGVPVIKWKKDGIHLALGMDERKQQLSNGSLLIQ 100
101 NILHSRHHKPDEGLYQCEASLGDSGSIISRTAKVAVAGPLRFLSQTESVT 150
151 AFMGDTVLLKCEVIGEPMPTIHWQKNQQDLTPIPGDSRVVVLPSGALQIS 200
201 RLQPGDIGIYRCSARNPASSRTGNEAEVRILSDPGLHRQLYFLQRPSNVV 250
251 AIEGKDAVLECCVSGYPPPSFTWLRGEEVIQLRSKKYSLLGGSNLLISNV 300
301 TDDDSGMYTCVVTYKNENISASAELTVLVPPWFLNHPSNLYAYESMDIEF 350
351 ECTVSGKPVPTVNWMKNGDVVIPSDYFQIVGGSNLRILGVVKSDEGFYQC 400
401 VAENEAGNAQTSAQLIVPKPAIPSSSVLPSAPRDVVPVLVSSRFVRLSWR 450
451 PPAEAKGNIQTFTVFFSREGDNRERALNTTQPGSLQLTVGNLKPEAMYTF 500
501 RVVAYNEWGPGESSQPIKVATQPELQVPGPVENLQAVSTSPTSILITWEP 550
551 PAYANGPVQGYRLFCTEVSTGKEQNIEVDGLSYKLEGLKKFTEYSLRFLA 600
601 YNRYGPGVSTDDITVVTLSDVPSAPPQNVSLEVVNSRSIKVSWLPPPSGT 650
651 QNGFITGYKIRHRKTTRRGEMETLEPNNLWYLFTGLEKGSQYSFQVSAMT 700
701 VNGTGPPSNWYTAETPENDLDESQVPDQPSSLHVRPQTNCIIMSWTPPLN 750
751 PNIVVRGYIIGYGVGSPYAETVRVDSKQRYYSIERLESSSHYVISLKAFN 800
801 NAGEGVPLYESATTRSITDPTDPVDYYPLLDDFPTSVPDLSTPMLPPVGV 850
851 QAVALTHDAVRVSWADNSVPKNQKTSEVRLYTVRWRTSFSASAKYKSEDT 900
901 TSLSYTATGLKPNTMYEFSVMVTKNRRSSTWSMTAHATTYEAAPTSAPKD 950
951 LTVITREGKPRAVIVSWQPPLEANGKITAYILFYTLDKNIPIDDWIMETI 1000
1001 SGDRLTHQIMDLNLDTMYYFRIQARNSKGVGPLSDPILFRTLKVEHPDKM 1050
1051 ANDQGRHGDGGYWPVDTNLIDRSTLNEPPIGQMHPPHGSVTPQKNSNLLV 1100
1101 IIVVTVGVITVLVVVIVAVICTRRSSAQQRKKRATHSAGKRKGSQKDLRP 1150
1151 PDLWIHHEEMEMKNIEKPSGTDPAGRDSPIQSCQDLTPVSHSQSETQLGS 1200
1201 KSTSHSGQDTEEAGSSMSTLERSLAARRAPRAKLMIPMDAQSNNPAVVSA 1250
1251 IPVPTLESAQYPGILPSPTCGYPHPQFTLRPVPFPTLSVDRGFGAGRSQS 1300
1301 VSEGPTTQQPPMLPPSQPEHSSSEEAPSRTIPTACVRPTHPLRSFANPLL 1350
1351 PPPMSAIEPKVPYTPLLSQPGPTLPKTHVKTASLGLAGKARSPLLPVSVP 1400
1401 TAPEVSEESHKPTEDSANVYEQDDLSEQMASLEGLMKQLNAITGSAF 1447
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.