SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P43565 from www.uniprot.org...

The NucPred score for your sequence is 0.91 (see score help below)

   1  MFNRSNTAGGSQAMKEGLGINKLSPISSNSNPSSLTSSNYEKYLQLATEK    50
51 NPCMILELELDGKVRYGSPQWNTITGVADDSGSSPTYIADLILGSDQDKG 100
101 VFQKATDMLLMNDDTSCTITFKIKAADYEGSAGCDDESTITTLEARGILI 150
151 RDGHTQLPSHTMWIVKPRTNDWSDFYANEDAQDDMVIQLSDNCDDIDIQL 200
201 PEEFAKTLGFGAKIFVQYLKRIRLEMIIDEFNLPLPKMELCRVCENFVPV 250
251 WWLETHSQSCVCEHRTESLIQLLHDNLLEQQAILANFTKDSEYKGSQIQV 300
301 RSNNFLNQVLDSLRELCQDAIDINPSEMVPDLYHSLSTFPQDNGNNNNNN 350
351 NNNNNNNNALLDQFPIQKDTVSLNSYFQFSPRTNHNIQNVTSWQSRFFLN 400
401 DDQDPGLALLIHDTLDLARKKVDAVLRLDNAMTYSLKIKNEVNNYVVQLI 450
451 REQIEINKHAILTHPMNLRSSSIFHSPLPQIHSQQPEAENLIYSSSTPLQ 500
501 VQHDQCASFEAPSKSHLEPIPFPVSSIEETPTANDIRHPSPLPRSCSNTV 550
551 MKLPTPRRKLDSNGLFSDAYLNADIIPNPSIESTISIDRDNNTNSRGSSM 600
601 KQYGIGEATDSRTSNSERPSSSSSRLGIRSRSITPRQKIEYSHVDNDDRT 650
651 NEMLSRDKDSLQPQPSVDTTITSSTQATTTGTKTNSNNSTNSVLPKLMTS 700
701 ISLTPRRGSPSFGNLASHSMQQTNSFKLIHDKSPISSPFTFSKDFLTPEQ 750
751 HPSNIARTDSINNAMLTSPNMPLSPLLLATNQTVKSPTPSIKDYDILKPI 800
801 SKGAYGSVYLARKKLTGDYFAIKVLRKSDMIAKNQVTNVKSERAIMMVQS 850
851 DKPYVARLFASFQNKDNLFLVMEYLPGGDLATLIKMMGYLPDQWAKQYLT 900
901 EIVVGVNDMHQNGIIHHDLKPENLLIDNAGHVKLTDFGLSRAGLIRRHKF 950
951 VPHKSSLSISSTLPIDNPANNFTMNNNNSNHSQLSTPDSFTSDHKQYNRS 1000
1001 KKSSLGQQYEHSEYSSTSNSHSMTPTPSTNTVVYPSYYRGKDRSHGSSNI 1050
1051 DLPASLRRSESQLSFSLLDISRSSTPPLANPTNSNANNIMRRKSLTENKS 1100
1101 FSNDLLSSDAIAATNTNINSNNNISLSPAPSDLALFYPDDSKQNKKFFGT 1150
1151 PDYLAPETIEGKGEDNKQCDWWSVGCIFFELLLGYPPFHAETPDAVFKKI 1200
1201 LSGVIQWPEFKNEEEEREFLTPEAKDLIEKLLVVDPAKRLGAKGIQEIKD 1250
1251 HPYFKNVDWDHVYDEEASFVPTIDNPEDTDYFDLRGAELQDFGDDIENDN 1300
1301 ANILFGKHGINTDVSELSAANLSPPLNHKNILSRKLSMSNTTNRSSNNSN 1350
1351 SSVHDFGAHTPVNKLSIASVLESVPQETGYITPNGTGTTTTSAKNSPNLK 1400
1401 NLSLAIPPHMRDRRSSKLNDSQTEFGSFNFRNLSALDKANKDAINRLKSE 1450
1451 HFSEQPGVHRRTSSASLMGSSSDGSVSTPGSNASNTTSGGKLKIHKPTIS 1500
1501 GSPSTFGTFPKTFLRSDSFSTRSYSPERSISIDSSTLSRKGSIIGDNQQT 1550
1551 TANSSDSPTMTKFKSPLSPANTTTVSSYFSRQRVLSKSFSQRTNSSDLSA 1600
1601 EESDRLQAISRVNSLRNRRRSGRKSSSTSEIGYHMDVLVCEPIPIHRYRV 1650
1651 TKDLENLGCTVVSVGAGDELVSRATSGVSFDLIMTALKLPKLGAIDIVQL 1700
1701 LKQTNGANSTTPIVAITNYFQEAATSRVFDDVLEKPVKLDELKKLVAKYA 1750
1751 LKKSQEDEEHTILSDSDETH 1770

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.