 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P45444 from www.uniprot.org...
The NucPred score for your sequence is 0.81 (see score help below)
1 MEVASSGVPDGAPTAISQGPLVDADAVVEYLADVLRVTLGALRSELENAG 50
51 SLLSKTKYSETAQRCLRFASESQVALYVQKDLVASDHTNGTADSEEPPAE 100
101 YVYTLSAEISSSSTTVASVAFIKRPAAIDPSLPISSQIQVMNLPGPAALN 150
151 NTQAQQGTSLSPYEILHLLVHHGLSPYFEANTRNQDGAAKAKTDSEVKTG 200
201 VPGTKKKFAELELGLLHLQQNVEIPALNLPLHEVVQAALVEAEKRGVKPS 250
251 VDLIDSTLLESSAFINSIQNNVNAWIKSIQTITKMSRDADSGSAAQEINF 300
301 WLSMETALEGIENQLRGDGVQLTMDILRHAKRYQATLSFVADTGLREATD 350
351 LVQKYNQLMRDFPLDELLSATSLQKVRESLVLIFNHLNKKLKICPYPIKR 400
401 ALALVEAISGDLDSQIHSLLNGRTIMHLDYREFRTLMKTAGSIWRTWDDN 450
451 LKEFTNVARESTRRRNEKFIPIKINARHDKTQERLKYINTFRVNHEQLQR 500
501 TIANVLGPKSYSAEDAAAGAAADGAVIVEEIGDVDAVEEVAQAYAALKSV 550
551 DVLDVSPTGTQNWITAEIAYNERTSRVENSIIARLRDRLATAKNANEMFR 600
601 VFSKFNALLVRPKIRGAIGEYQTQLIDNVKQDISALHERFKQQYGHSEAH 650
651 AMAQLRDLPPVSGAIVWARQIERQLDGYMRKVEDVLGEDWHLHTEGQKLQ 700
701 AESNLFRKKLDTRPVFETWLHDVQRRRITISGRLFNIIRNRAAGNTLELA 750
751 VNFDAQIIALFKEIRNLIWLNFQVPHAVSNISKEAKRVYPYAISLMESVR 800
801 TLLQTNRSILSMTDVAILLNGYMNDAQSMIVRGIPLRWESFVHSYELHVK 850
851 QAALVNGALDSVIPSRGESKHVQFVREFAASAAVLQHKTAVLASINDTIQ 900
901 KAIHELKTCPYEFSAFKQRLDAIQAAVDKLNLENYVNLGFWVHNLNQKIE 950
951 GILSERLHKAIREWMNSFQESQSGQPMQKVNGNGDTDTTAYNIEFPGLTH 1000
1001 EISMRNQVLHLDPPLQYARATWFSHFDNWLGIICNLEKIKSSRYQISIEV 1050
1051 QKVQLSESCFADLPQHCTNELILVYSAIETRLKEVSEYVDKWLQFQSLWD 1100
1101 LQSEQVYDILGDDLSQWLQLLQEIRKSRATFDTSEVSRSFGNIKIDYEQV 1150
1151 QTRVNAKYDQWQHEILLKFGSKLGNRMREVHSEIATARHDLEGKSLDSAS 1200
1201 TAHAVAFITSVQQCKRKAKVWEPEVDLFRQGQATLVRQRYQFPSDWLHVE 1250
1251 NVDGEWAALNELLGRKGKIVEEQTEALRAKIAAEDKVINDKITEAIAQWN 1300
1301 EEKPVSGTIPPEEASRSLSMFQTRLESLQSEFEMVSKAKEALDLPPSAES 1350
1351 SLPAILEEVQDFMSVWAALSTIWRSLNDLRDTLWTSIQPRKLRQSIDGLI 1400
1401 KMTKEMPSRMRQYAAFEHIQNVLKQLLKVNPLLSDMKSEAVRERHWLKIY 1450
1451 KALKPGMRFSLVSLTLGDVWDLQLAASETVIRNIIAQAQGEMALEEFLKS 1500
1501 VRETWQNYSLDLVNYQNKCRLIRGFDDLFAKCSENLNSLQAMRHSPYYKE 1550
1551 FEEDASSWEDKLNRVHVLFDVWIDVQRQWVYLEGVFTGNADIKHLLPLES 1600
1601 SRFQNINSEFFAVMKKVYKSPFVLDVLAINGVQKSLERLAELLNKIQKAL 1650
1651 GEYLERERVSFPRFYFVGDEDLLEIIGNSNDIFRVAKHFKKMFAGLSGVL 1700
1701 MDDDNNIVGFTSKEGEEVRLKKEVNLVKTPRINDWLTALESNMKLTLAEL 1750
1751 LAEAIEQFEPIYNSAEVDRTAFDDFIANYPAQIVVLASQVVWTNEVQKSL 1800
1801 ENSGTTLPTLYDAQVRILELLAVTVLGDLDPISRKKCEHLITEFVHQRDT 1850
1851 ISKLIASNATSATHYLWLLQMRYVYQADGDFLQRLYVHMANAKLNYGFEY 1900
1901 LGVPERLVRTPLTDRCFLTLTQALCQRLGGSPYGPAGTGKTESVKALGLQ 1950
1951 LGRFTLVFCCDDTFDFQAMGRIFLGICQVGAWGCFDEFNRLEERILSAVS 2000
2001 QQIQNIQIGLRNKETDEKSQIDLVGRRLTVNMNTGIFITMNPGYAGRSNL 2050
2051 PDNLKKLFRSVAMSKPDKELIAEVMLFSQGFKQAKRLSQQTVPFFDHCST 2100
2101 RLSKQAHYDFGLRALKSVLVSSGGLKRARIANSDGDLGPDEIVEPQIIVQ 2150
2151 SLRETIAPKLVREDVATMLQIQEQDFAGVEYVPANYEALTAAIREIAREQ 2200
2201 HFVDSEMWITKILQLYQIQSIHHGVMMVGKSGSGKSSAWKILLQALQRIE 2250
2251 GVEGVSHIIDSKVMSKEALYGSLDSTTREWTDGLFTGILRKIVDNLRGED 2300
2301 TKRHWIVFDGDVDPEWVENLNSVLDDNKLLTLPNGERLNLPPNVRIMFEV 2350
2351 ESLKYATLATVSRCGMVWFNEDTVTPSMIITNYVESLKTKTFEDLDDDSV 2400
2401 PSGQSAVKTQDCQDMLSTILSQLLQTDELVHKSLGEAKKYNHIMEFTEIR 2450
2451 ALNTLFSLLNKACRNILEYNIQHVDFPLEYEQIESYISKKLLLALVWSFT 2500
2501 GDCPLGDRKSFGEFVSGLTTIDLPIETNSSIIDFDVTLPKGTWSSWQSQV 2550
2551 PTIDVNTHSITQTDVVIPTVDTVRHEDVLYSWLAEHKPLLLCGPPGSGKT 2600
2601 MTLFAALRKLPNMEVVGLNFSSATTPDLLIKTFEQYCEYKKTLSGVVMSP 2650
2651 NQIGRWLVIFCDEINLPAPDKYGTQRAISFLRQLVEQNGFWRTSDKTWVS 2700
2701 LDRIQFVGACNPPTDAGRTPLAERFLRHSPLVMVDYPGEISLNQIYGTFN 2750
2751 SAILKILPLLRGYSESLTKAMVQFYLESQQRFTPKIQPHYVYSPRELTRW 2800
2801 VRGVYEAIKPLESLSVEGLVRIWAHEALRLFQDRLVTEEERAWTADAVRR 2850
2851 IALEHFPTIDQEAALKGPILFSNWLSRNYVPVEQEQLRDFVKARLKTFCE 2900
2901 EEVDVPLVLFNDVLEHALRIDRVFRQPQGHLILIGVSGSGKTTLSRFVAW 2950
2951 MNGLKVFQIKVHGKYSSEDFDDDLRSVLRRAGCKGEKICFIMDESNVLDS 3000
3001 GFLERMNTLLANAEVPGLFEGDEFSSLMTACKEGAQRQGLILDSQEELYK 3050
3051 WFTQQIVKNLHVVFTMNPPEEGLSSKAATSPALFNRCVLNWMGDWSDQAL 3100
3101 FQVGSELTQSVDLDKPGFVAPDSIPVAYRELSLPASHRDTVINAMVYIHH 3150
3151 SLQRFNQRLQKQQGKTTYLTPRHYLDFVAQYVKLFNEKREDLEEQQRHLN 3200
3201 VGLEKLRDTVEKVSDLRGSLAQKKMQLEKKDAEANEKLQRMVADQREAEQ 3250
3251 RKAVSLEVQAALEKQEKEVALRKDVVLHDLARAEPAVLEAQKSVSNIKRQ 3300
3301 HLTEVRSMGNPPAGVRLALEAVCTLLGHKVDSWKTIQGIVRRDDFIASIV 3350
3351 NYDNEKQMTKNHRLKMQNEFFSKEDFTYERVNRASKACGPLVQWVEAQVN 3400
3401 YSAILDRVGPLRDEVGQLEEQALQTKAEAQAIENTINDLESSIATYKSEY 3450
3451 AALISETQAIKAEMERVQFKVDRSVRLLDSLSSERTRWEEGSKSFETQIS 3500
3501 TLIGDVLIAAAFLAYAGFYDQQFRKAMTEDWVQHLVQSGISLKPHNPITE 3550
3551 YLSNADERLAWQAHSLPVDDLSTENAIFLKRYNRYPLIIDPSGRVTEFLQ 3600
3601 KESSDRKLTVTSFLDDSFVKQLESALRFGNPILIQDAEHLDPILNHVLNK 3650
3651 EYQKTGGRVLIQLGKQEIDFSPSFKLFLSTRDPSATFAPDVCSRTTFVNF 3700
3701 TITQSSLQIQSLNEVLKSERDDVDRRRSDLVKAQGEFNVHLRQLEKRLLQ 3750
3751 ALNESHGNILDDDNVIETLETLKKEAAEISRKMAETEGVMTEVEEITQRY 3800
3801 SIIARSCSAVFAVLEQLHHINHFYQFSLQYFTDIFESVLHGNPHLENSGL 3850
3851 RKMEDYQQRIQIILRDLFVTTYQRTSLGVIQKDRITLAMLLAQAAPYPMD 3900
3901 KSIIDTILDESVEGTDLSANPEAKVQVMSAFGNMSLFKAHLPSVTAEQWD 3950
3951 QFLGEELAENFVPKVWDENTSELDKLLRSLLLVKLCRMDRFVPAAERFIV 4000
4001 AVFGRELYEGSTDLKDIVGQVTATAPISLSSSPGFDASYKVDALVERTHA 4050
4051 TCANIAMGSNEGLESADKAISNAASAGTWVLVKNVHLAPSWLQSLEKRLA 4100
4101 SLKPHKDFRLFLSMESSPKIPVNLIRASRVLMYEQPAGVRANMKDSLSSL 4150
4151 STRASKAPVEKARVYLLLCFLHAVVQERLRYAPSLGWKGFWEFNDSDYEC 4200
4201 SANIIDHWVDVVAQGRSNVAPQKLPWDMIRTLITEMYGGKVDDSDDFQQL 4250
4251 ERLVHSFLTPATFEADYKLVEGVENDECLILPGETGLPAFVEWVNKLPER 4300
4301 EPPTYLGLPANAEKLLLVGHGKKMISDLARITSLLDEGEQLMIDA 4345
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.