| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P47035 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MYKLQVVLVPPSLQATMPIQFGYGPTIAESSQLLPNRTNMAQSAGDASLQ 50
51 YANLRSANVSFTPSYFNQSRFRKFLLFTKPTNTLLNLSDEIIDKCEKMYP 100
101 SLQEDIEILSLQDNSGCDLDPDFLVKDVFNVNNIVRVILKNEIDLDDSAP 150
151 VSLYKSVKRSKLNNGSPQSVQPQQQIPSSSGVLRIAKKRPPTGTTTTTTI 200
201 RSATNGSMRVSTPLARQIYPPPSSKIVSNNSDDEDEDIGERSFLPPPTQP 250
251 QSPPIRISSGIDAGKKIKSSIVEEDIVSRSATVDPDKTKQQRLLSGTPIM 300
301 STMTPNRVTLTGQRVVSEHAHKNELVFSASASSSSFANGGTAAVTAQDIN 350
351 RKPPVTTPRITSGMLKIPEPRISEIEKELKEGPSSPASILPAKAAKIPMK 400
401 KPYLENGENYESDDSSSSENQETPETEPHSKASLQRSQSSIADNNGSPVK 450
451 NSPLGDAMPHNVHLAELPKASNTSITKSSNGESWGKQQEHQPPRKSSLET 500
501 IVEKKSQAEPSGIVEPKRMTNFLDDNQVREKEDTNDKLLEKEILPTIPHN 550
551 DQPILASSDKSNGTLKSLAGKVSSNNNASKEDGTIINGTIEDDGNDNDEV 600
601 DTTVRIVPQDSDSSSFPKSDLFKMIEGDDTDLPQWFKGKNSRTSGNSKNS 650
651 KPYTTVLNKDIDNSKPDPRNILPQRTPRSAAKRAAQLLAGAKKNEVPQKS 700
701 TEDSSSAASTDDESESGIETDFSSDDDFKRKNMSVPNNGPKDISLHSLKG 750
751 SVVPVKDSKIINKEVDEERNDKRDSQKKSAVSESSVTNSKISEQMAKSFY 800
801 PNSNKKQNEATKVETKPATQASSFPVVGGSPSVATKGTTSFNEEGNRKNV 850
851 KTKAKNESAQIDRQQKETTSRVADLKSANIGGEDLNKKAEGSKEPEKASA 900
901 NIQDANDKNNSKEKEDSKSKQVSQKKLKMTDHLKEGNVQLPKPSANDKLK 950
951 DLKAKFTNSKTLVPPGIISNEKNNSSANDDDSSSSGSSTEDESSSSSSSS 1000
1001 DEETSTSRKARRVVVNTPREPVRSSSKIEAPSPSVNKKINATPDKIPVTQ 1050
1051 LMDMSSPPSVKSKTTSNPSSILHDLPRKVRPSLSSLSDLVSRGIPDVKEK 1100
1101 TSKSNEKSQTKAPSSSDDESSSDSDSNSSSDSVSDSSSDSKSESDSDDSG 1150
1151 DSSDDGKSFISAKSASAALGKKKKPSGGFASLIKDFKKK 1189
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.