 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P47169 from www.uniprot.org...
The NucPred score for your sequence is 0.68 (see score help below)
1 MTASDLLTLPQLLAQYSSSAPQNKVFYTTSTKNSHSSFKGLESVATDATH 50
51 LLNNQDPLNTIKDQLSKDILTTVFTDETTLVKSIHHLYSLPNKLPLVITV 100
101 DLNLQDYSAIPALKDLSFPILISSDLQTAISNADSSYKIATSSLTPVFHF 150
151 LNLEKIGTSTAIEQDIDFPTLEIANEETKVALSEATDSLTNFELVKGKES 200
201 ITTVIVNLSPYDAEFSSVLPSNVGLIKIRVYRPWNFSKFLEILPSSVTKI 250
251 AVLQGVSKKSQSNEFQPFLLDFFGNFNELVSRNIEQVVLTNIGNVNDYGN 300
301 VINTVISNINKKEPDNNLFLGESNEKAEEQAEVTQLISSVKKVVNLEDAY 350
351 IKVLKQLFSSNLQILNQFSSETIEPSNPEFGFGRFLKQEAQREELISLAK 400
401 TSLDPSLYLSEDANKIVQLLSKWLSFNGRDLDEAQLQEANATGLEIFQLL 450
451 QSNQDSSTVLKFLKIAPTSDSFIFKSSWLIGSDAWSYDLGHSGIQQVLSS 500
501 RKNINVLLIDSEPYDHRKQNQDRKKDVGLYAMNYYSAYVASVAVYASYTQ 550
551 LLTAIIEASKYNGPSIVLAYLPYNSENDTPLEVLKETKNAVESGYWPLYR 600
601 FNPVYDDPSTDKEAFSLDSSVIRKQLQDFLDRENKLTLLTRKDPSLSRNL 650
651 KQSAGDALTRKQEKRSKAAFDQLLEGLSGPPLHVYYASDGGNAANLAKRL 700
701 AARASARGLKATVLSMDDIILEELPGEENVVFITSTAGQGEFPQDGKSFW 750
751 EALKNDTDLDLASLNVAVFGLGDSEYWPRKEDKHYFNKPSQDLFKRLELL 800
801 SAKALIPLGLGDDQDADGFQTAYSEWEPKLWEALGVSGAAVDDEPKPVTN 850
851 EDIKRESNFLRGTISENLKDTSSGGVTHANEQLMKFHGIYTQDDRDIREI 900
901 RKSQGLEPYYMFMARARLPGGKTTPQQWLALDHLSDTSGNGTLKLTTRAT 950
951 FQIHGVLKKNLKHTLRGMNAVLMDTLAAAGDVNRNVMVSALPTNAKVHQQ 1000
1001 IADMGKLISDHFLPKTTAYHEVWLEGPEEQDDDPSWPSIFENRKDGPRKK 1050
1051 KTLVSGNALVDIEPIYGPTYLPRKFKFNIAVPPYNDVDVLSIDVGLVAIV 1100
1101 NPETQIVEGYNVFVGGGMGTTHNNKKTYPRLGSCLGFVKTEDIIPPLEGI 1150
1151 VIVQRDHGDRKDRKHARLKYTVDDMGVEGFKQKVEEYWGKKFEPERPFEF 1200
1201 KSNIDYFGWIKDETGLNHFTAFIENGRVEDTPDLPQKTGIRKVAEYMLKT 1250
1251 NSGHFRLTGNQHLVISNITDEHVAGIKSILKTYKLDNTDFSGLRLSSSSC 1300
1301 VGLPTCGLAFAESERFLPDIITQLEDCLEEYGLRHDSIIMRMTGCPNGCS 1350
1351 RPWLGELALVGKAPHTYNLMLGGGYLGQRLNKLYKANVKDEEIVDYIKPL 1400
1401 FKRYALEREEGEHFGDFCIRVGIIKPTTEGKYFHEDVSEDAY 1442
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.