 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P48423 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MLLKKKRYMFDERDDNNINSPVAVEPSSNNNKMADTREVRIEEQLKVKIG 50
51 EAKNLSSRNAANTSCSTQGTRDVYCTIALDQEEICRTPTIERTLTPFFGE 100
101 EHQFKIPRRFRYLTIYLWDRDMKQDKPIGKIAIKREELHMYNHKDHWFSL 150
151 RPVDQDSEVQGMVNVEVAFTEAQQTQSLSEGIDLGQHTLRHHQNLPHHSH 200
201 QQRAHLNDYKENSELSNIQRASAAAASSSSAAMTLKTRAAGLFGHVHHPP 250
251 SQTQHFPIINTTSTSSDQLSNWKSHGRFVGVTIKVPACVDLAKKQGTCDP 300
301 FVVCTAHYSNKHQVTRRTKQRKKTVDPEFDEAMYFDLHIDADAGSTNTTG 350
351 SNKSAGSLESSANKGYSIYPVGGADLVEIVVSVWHDAHGAMSDKVFLGEV 400
401 RLPMLNKQEQQAVNPSAWYYLQPRSMTHSSRSLNATPRSCATPPGTRLSV 450
451 DSTIGSLRLNLNYTADHVFPLATYDDLMNLLLESVDQRPITVSAVSILGE 500
501 LVSGKTEVAQPLVRLFTHTERIAPIIKALADHEISHLTDPTTIFRGNTLV 550
551 SKMMDEAMRLSGLHYLHQTLRPVLSQIVAEKKPCEIDPSKIKDRSAVDTN 600
601 LHNLQDYVERVFEAITKSADRCPKVLCQIFHDLRECAGEHFPSNREVRYS 650
651 VVSGFIFLRFFAPAILGPKLFDLTTERLDAQTSRTLTLISKTIQSLGNLV 700
701 SSRSSQQTCKEEFTVELYKKFCTEQHVDAVKHFLEVISTPSHASSSVHPA 750
751 AAAATPLEPVLLKEGLMTKYPTSRKRFGRQFKQRHFRLTTHSLSYAKSKG 800
801 KQPICDIPLQEIASVEQLKDKSFKMQNCFKIVHNDRSLIVQTTNCVEERE 850
851 WFDLLHKICLMNSIRMQYFHPSAFVSGFYSCCGRSDENSPGCKKVLDKTM 900
901 DYFQMDLVTALDPALDLQRIHTLIMSNMSVLESLLDPLTYHQSLSQTQHQ 950
951 QHNPLVPLATDLQKHSPQAFAEFKRTIEKLREKAYAIDRDHRDYKQGITR 1000
1001 QLKYGSRQAPIGDDNYWHMMRAAGQLNQQHHQQQQHQQQQQQQQQQQLQQ 1050
1051 FQPQPVLPQMQNVRAYPYQPATSNMNAYCLHNMQYQQQRLPFHQQQQQHH 1100
1101 QQLQQQQSQFQPLRSHQLQRHNNNLNNNNCGNGSSSSPSSTTSSVVAAPP 1150
1151 STTSSSQPAPPIY 1163
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.