| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P48996 from www.uniprot.org...
The NucPred score for your sequence is 0.94 (see score help below)
1 MQPFKRRALTSDDDRPYADTDSMPEVDLDVDRRRQYMEQLNIFDDVSSGA 50
51 YMLELEAAENGVKYDEKEDLLNVQIPPKYEDQISDPDGNRMIILNIYVEN 100
101 FKSYAGKHILGPFHKNLTMILGPNGSGKSNVIDALLFVFGFKAGKIRTKK 150
151 LSALINSGGNYESCSVTIMFQMVKDMPVENYDKYEVLTDNCVCITRTINR 200
201 ENNSKYRIDDKDASQKDVQELLLRAGIDMTHNRFLILQGEVEAIALMKPT 250
251 SKNPNEEGMLEYIEDIVGTNRFVAPISKLMHRVSLLEHKSSQYGASVRRH 300
301 EGHLKVFEKAMVIGMAYLNTFNNLNYLRGIRVKHNLCRYAETMRDAKMSL 350
351 VTRTGELEENKDIMLEAKDEVRKKETHERSLNSIVTELENKRIDWQSKKN 400
401 DWHARDAKRKQGLKSCTQDLGKLMKERDEARREKFEIETAPENARISKQN 450
451 MQLEWDQLKEQENVCQRTATENLIKYDQKSSADRAKHDDLEKKLSDELLQ 500
501 SMRAKAELDVSESELKDMTIMMEQGQKRVDELKGTLQTMMAENIRDNTEL 550
551 NAVTTELQDRKLKFDKAVEKLPHLKSTEQLLRSKKYELDQEVIEASNTQE 600
601 VTYRHQATAKLHELKEAGLFPGFKGRLGDLASIPIKFDTAISTVFFAQLD 650
651 YHVVQTSDECRIGIGFCHEYKLPRTTFVFLDHLKDTDTSGMDSTMKFPAE 700
701 RLFDKIHCVNPEIRREFYFLIHDILVVDSLEEATRIDKKYPGRHRYCTLN 750
751 GSILNRSGALTGGGKPTTGRIRNDNNPNMSGVKKVDLSKLRAAQEKHNHA 800
801 LEAHLKLQLKQEEIRADNGPIIKQLEIRKRELIMSTKEQKTRIAELKSSI 850
851 AAHERRMVNYREVTVEDLDEKRAQIADLKRQVEESQKSSAKIKQQIEQYK 900
901 RKMDRMFMELVQKNKDSIEQAKDRMGQLEQDIARQTAIIENNPSHLEQAE 950
951 KKLSELEHMCLEKRSEADALAQLEVGEDVKGIDIINAQLQTSTASIDAQR 1000
1001 ARYTEAVAARREADAAYQTTVDNYNMVKQTYDELMRIIDDLENKTMADNA 1050
1051 ELDIIESAWMQPEKLYPPGKFVRYNDPDIAAKMTDGHVVLPYECISMIEP 1100
1101 HREAYEEHEARMLEDDVFEDTANKICKLEKDVDKFRREFDNKGVRDYAMI 1150
1151 VSLLMNEVTSAKKFSDKLKAHREKLNELRMARFNEFSEALAFLGTTTQML 1200
1201 YQLITNGGDASLKFVEEGKSTDPFDGGIKFSVRPAKKSWKLIENLSGGEK 1250
1251 TLASLCFVFAMHHYRPTPLYVMDEIDAALDLNNVSLIANYIKHSERTRNA 1300
1301 QFIIISLRNQMFEVGNRLLGIYKIDGKTYNIMVDPIAVEIKNRPILKIFE 1350
1351 EEIKRREKLRRAEIEPEIDLSNGLSNVVIAPKRKQRRLEMLKLSDFGLDD 1400
1401 DSDLPEFNRFPPATRRELSVEDSDEDDEPVRRRPRRQVEEEDEEDELIEE 1450
1451 ATPSPPPIVVQRRVRRSRH 1469
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.