SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P49259 from www.uniprot.org...

The NucPred score for your sequence is 0.65 (see score help below)

   1  MPLLSLSLLLLLLQVPAGSAETAAWAVTPERLREWQDKGIFIIQSENLEK    50
51 CIQASKSTLTLENCKPPNKYMLWKWVSNHRLFNIGGSGCLGLNVSSPEQP 100
101 LSIYECDSTHVSLKWHCNKKTITGPLQYLVQVKQDNTLVASRKYLHKWVS 150
151 YMSGGGGICDYLHKDLYTIKGNAHGTPCMFPFQYNQQWHHECTREGREDN 200
201 LLWCATTSRYERDEKWGFCPDPTSTEVGCDAVWEKDLHSRICYQFNLLSS 250
251 LSWSEAHSSCQMQGAALLSIADETEENFVRKHLGSEAVEVWMGLNQLDED 300
301 AGWQWSDRTPLNYLNWKPEINFEPFVEYHCGTFNAFMPKAWKSRDCESTL 350
351 PYVCKKYLNPTDHGVVEKDAWKYYATHCEPGWNPHNRNCYKLQKEKKTWN 400
401 EALQSCQSNNSVLTDITSLAEVEFLVTLLGDENASETWIGLSSHKIPVSF 450
451 EWSNGSSVTFTNWHTLEPHIFPNRSQLCVSAEQSEGHWKVKNCEETLFYL 500
501 CKKTGLVLSDTESGCQKGWERHGKFCYKIDTVLRSFDHASSGYYCPPALI 550
551 TITSRFEQAFITSLISSVVKTKDTYFWIALQDQNNTGEYTWKTAGQQLEP 600
601 VKYTHWNTRQPRYSGGCVVMRGRSHPGRWEVRDCRHFKAMSLCKQPVENR 650
651 EKTKQEEGWPFHPCYLDWESEPGLASCFKVFHSEKVLMKRTWRQAEEFCE 700
701 EFGAHLASFAHIEEENFVNELLHSKFNRTEERQFWIGFNKRNPLNAGSWE 750
751 WSDGTPVVSSFLDNSYFGEDARNCAVYKANKTLLPSYCGSKREWICKIPR 800
801 DVRPKVPPWYQYDAPWLFYQDAEYLFHISASEWSSFEFVCGWLRSDILTI 850
851 HSAHEQEFIHSKIRALSKYGVNWWIGLREERASDEFRWRDGSPVIYQNWD 900
901 KGKERSMGLNESQRCGFISSITGLWASEECSISMPSICKRKKVWVIEKKK 950
951 DIPKQHGTCPKGWLYFDYKCLLLKIPEGPSDWKNWTSAQDFCVEEGGTLV 1000
1001 AIENEVEQAFITMNLFGHTTNVWIGLQDDDYEKWLNGRPVSYSNWSPFDT 1050
1051 KNIPNHNTTEVQKRIPLCGLLSNNPNFHFTGKWYFEDCREGYGFVCEKMQ 1100
1101 DASGHSINTSDMYPIPNTLEYGNRTYKIINANMTWYTALKTCLMHGAELA 1150
1151 SITDQYHQSFLTVILNRVGYAHWIGLFTEDNGLSFDWSDGTKSSFTFWKD 1200
1201 DESSFLGDCVFADTSGRWSSTACESYLQGAICQVPTETRLSGRLELCSET 1250
1251 SIPWIKFKSNCYSFSTVLESTSFEAAHEFCKKKGSNLLTIKDEAENSFLL 1300
1301 EELLAFRSSVQMIWLNAQFDGDNETIKWFDGTPTDQSNWGIRKPEVYHFK 1350
1351 PHLCVALRIPEGVWQLSSCQDKKGFICKMEADIHTVKKHPGKGPSHSVIP 1400
1401 LTVALTLLVILAISTLSFCMYKHSHIIFGRLAQFRNPYYPSANFSTVHLE 1450
1451 ENILISDLEKNDQ 1463

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.