SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P49454 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MSWALEEWKEGLPTRALQKIQELEGQLDKLKKEKQQRQFQLDSLEAALQK    50
51 QKQKVENEKTEGTNLKRENQRLMEICESLEKTKQKISHELQVKESQVNFQ 100
101 EGQLNSGKKQIEKLEQELKRCKSELERSQQAAQSADVSLNPCNTPQKIFT 150
151 TPLTPSQYYSGSKYEDLKEKYNKEVEERKRLEAEVKALQAKKASQTLPQA 200
201 TMNHRDIARHQASSSVFSWQQEKTPSHLSSNSQRTPIRRDFSASYFSGEQ 250
251 EVTPSRSTLQIGKRDANSSFFDNSSSPHLLDQLKAQNQELRNKINELELR 300
301 LQGHEKEMKGQVNKFQELQLQLEKAKVELIEKEKVLNKCRDELVRTTAQY 350
351 DQASTKYTALEQKLKKLTEDLSCQRQNAESARCSLEQKIKEKEKEFQEEL 400
401 SRQQRSFQTLDQECIQMKARLTQELQQAKNMHNVLQAELDKLTSVKQQLE 450
451 NNLEEFKQKLCRAEQAFQASQIKENELRRSMEEMKKENNLLKSHSEQKAR 500
501 EVCHLEAELKNIKQCLNQSQNFAEEMKAKNTSQETMLRDLQEKINQQENS 550
551 LTLEKLKLAVADLEKQRDCSQDLLKKREHHIEQLNDKLSKTEKESKALLS 600
601 ALELKKKEYEELKEEKTLFSCWKSENEKLLTQMESEKENLQSKINHLETC 650
651 LKTQQIKSHEYNERVRTLEMDRENLSVEIRNLHNVLDSKSVEVETQKLAY 700
701 MELQQKAEFSDQKHQKEIENMCLKTSQLTGQVEDLEHKLQLLSNEIMDKD 750
751 RCYQDLHAEYESLRDLLKSKDASLVTNEDHQRSLLAFDQQPAMHHSFANI 800
801 IGEQGSMPSERSECRLEADQSPKNSAILQNRVDSLEFSLESQKQMNSDLQ 850
851 KQCEELVQIKGEIEENLMKAEQMHQSFVAETSQRISKLQEDTSAHQNVVA 900
901 ETLSALENKEKELQLLNDKVETEQAEIQELKKSNHLLEDSLKELQLLSET 950
951 LSLEKKEMSSIISLNKREIEELTQENGTLKEINASLNQEKMNLIQKSESF 1000
1001 ANYIDEREKSISELSDQYKQEKLILLQRCEETGNAYEDLSQKYKAAQEKN 1050
1051 SKLECLLNECTSLCENRKNELEQLKEAFAKEHQEFLTKLAFAEERNQNLM 1100
1101 LELETVQQALRSEMTDNQNNSKSEAGGLKQEIMTLKEEQNKMQKEVNDLL 1150
1151 QENEQLMKVMKTKHECQNLESEPIRNSVKERESERNQCNFKPQMDLEVKE 1200
1201 ISLDSYNAQLVQLEAMLRNKELKLQESEKEKECLQHELQTIRGDLETSNL 1250
1251 QDMQSQEISGLKDCEIDAEEKYISGPHELSTSQNDNAHLQCSLQTTMNKL 1300
1301 NELEKICEILQAEKYELVTELNDSRSECITATRKMAEEVGKLLNEVKILN 1350
1351 DDSGLLHGELVEDIPGGEFGEQPNEQHPVSLAPLDESNSYEHLTLSDKEV 1400
1401 QMHFAELQEKFLSLQSEHKILHDQHCQMSSKMSELQTYVDSLKAENLVLS 1450
1451 TNLRNFQGDLVKEMQLGLEEGLVPSLSSSCVPDSSSLSSLGDSSFYRALL 1500
1501 EQTGDMSLLSNLEGAVSANQCSVDEVFCSSLQEENLTRKETPSAPAKGVE 1550
1551 ELESLCEVYRQSLEKLEEKMESQGIMKNKEIQELEQLLSSERQELDCLRK 1600
1601 QYLSENEQWQQKLTSVTLEMESKLAAEKKQTEQLSLELEVARLQLQGLDL 1650
1651 SSRSLLGIDTEDAIQGRNESCDISKEHTSETTERTPKHDVHQICDKDAQQ 1700
1701 DLNLDIEKITETGAVKPTGECSGEQSPDTNYEPPGEDKTQGSSECISELS 1750
1751 FSGPNALVPMDFLGNQEDIHNLQLRVKETSNENLRLLHVIEDRDRKVESL 1800
1801 LNEMKELDSKLHLQEVQLMTKIEACIELEKIVGELKKENSDLSEKLEYFS 1850
1851 CDHQELLQRVETSEGLNSDLEMHADKSSREDIGDNVAKVNDSWKERFLDV 1900
1901 ENELSRIRSEKASIEHEALYLEADLEVVQTEKLCLEKDNENKQKVIVCLE 1950
1951 EELSVVTSERNQLRGELDTMSKKTTALDQLSEKMKEKTQELESHQSECLH 2000
2001 CIQVAEAEVKEKTELLQTLSSDVSELLKDKTHLQEKLQSLEKDSQALSLT 2050
2051 KCELENQIAQLNKEKELLVKESESLQARLSESDYEKLNVSKALEAALVEK 2100
2101 GEFALRLSSTQEEVHQLRRGIEKLRVRIEADEKKQLHIAEKLKEREREND 2150
2151 SLKDKVENLERELQMSEENQELVILDAENSKAEVETLKTQIEEMARSLKV 2200
2201 FELDLVTLRSEKENLTKQIQEKQGQLSELDKLLSSFKSLLEEKEQAEIQI 2250
2251 KEESKTAVEMLQNQLKELNEAVAALCGDQEIMKATEQSLDPPIEEEHQLR 2300
2301 NSIEKLRARLEADEKKQLCVLQQLKESEHHADLLKGRVENLERELEIART 2350
2351 NQEHAALEAENSKGEVETLKAKIEGMTQSLRGLELDVVTIRSEKENLTNE 2400
2401 LQKEQERISELEIINSSFENILQEKEQEKVQMKEKSSTAMEMLQTQLKEL 2450
2451 NERVAALHNDQEACKAKEQNLSSQVECLELEKAQLLQGLDEAKNNYIVLQ 2500
2501 SSVNGLIQEVEDGKQKLEKKDEEISRLKNQIQDQEQLVSKLSQVEGEHQL 2550
2551 WKEQNLELRNLTVELEQKIQVLQSKNASLQDTLEVLQSSYKNLENELELT 2600
2601 KMDKMSFVEKVNKMTAKETELQREMHEMAQKTAELQEELSGEKNRLAGEL 2650
2651 QLLLEEIKSSKDQLKELTLENSELKKSLDCMHKDQVEKEGKVREEIAEYQ 2700
2701 LRLHEAEKKHQALLLDTNKQYEVEIQTYREKLTSKEECLSSQKLEIDLLK 2750
2751 SSKEELNNSLKATTQILEELKKTKMDNLKYVNQLKKENERAQGKMKLLIK 2800
2801 SCKQLEEEKEILQKELSQLQAAQEKQKTGTVMDTKVDELTTEIKELKETL 2850
2851 EEKTKEADEYLDKYCSLLISHEKLEKAKEMLETQVAHLCSQQSKQDSRGS 2900
2901 PLLGPVVPGPSPIPSVTEKRLSSGQNKASGKRQRSSGIWENGRGPTPATP 2950
2951 ESFSKKSKKAVMSGIHPAEDTEGTEFEPEGLPEVVKKGFADIPTGKTSPY 3000
3001 ILRRTTMATRTSPRLAAQKLALSPLSLGKENLAESSKPTAGGSRSQKVKV 3050
3051 AQRSPVDSGTILREPTTKSVPVNNLPERSPTDSPREGLRVKRGRLVPSPK 3100
3101 AGLESNGSENCKVQ 3114

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.