SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P49790 from www.uniprot.org...

The NucPred score for your sequence is 0.68 (see score help below)

   1  MASGAGGVGGGGGGKIRTRRCHQGPIKPYQQGRQQHQGILSRVTESVKNI    50
51 VPGWLQRYFNKNEDVCSCSTDTSEVPRWPENKEDHLVYADEESSNITDGR 100
101 ITPEPAVSNTEEPSTTSTASNYPDVLTRPSLHRSHLNFSMLESPALHCQP 150
151 STSSAFPIGSSGFSLVKEIKDSTSQHDDDNISTTSGFSSRASDKDITVSK 200
201 NTSLPPLWSPEAERSHSLSQHTATSSKKPAFNLSAFGTLSPSLGNSSILK 250
251 TSQLGDSPFYPGKTTYGGAAAAVRQSKLRNTPYQAPVRRQMKAKQLSAQS 300
301 YGVTSSTARRILQSLEKMSSPLADAKRIPSIVSSPLNSPLDRSGIDITDF 350
351 QAKREKVDSQYPPVQRLMTPKPVSIATNRSVYFKPSLTPSGEFRKTNQRI 400
401 DNKCSTGYEKNMTPGQNREQRESGFSYPNFSLPAANGLSSGVGGGGGKMR 450
451 RERTRFVASKPLEEEEMEVPVLPKISLPITSSSLPTFNFSSPEITTSSPS 500
501 PINSSQALTNKVQMTSPSSTGSPMFKFSSPIVKSTEANVLPPSSIGFTFS 550
551 VPVAKTAELSGSSSTLEPIISSSAHHVTTVNSTNCKKTPPEDCEGPFRPA 600
601 EILKEGSVLDILKSPGFASPKIDSVAAQPTATSPVVYTRPAISSFSSSGI 650
651 GFGESLKAGSSWQCDTCLLQNKVTDNKCIACQAAKLSPRDTAKQTGIETP 700
701 NKSGKTTLSASGTGFGDKFKPVIGTWDCDTCLVQNKPEAIKCVACETPKP 750
751 GTCVKRALTLTVVSESAETMTASSSSCTVTTGTLGFGDKFKRPIGSWECS 800
801 VCCVSNNAEDNKCVSCMSEKPGSSVPASSSSTVPVSLPSGGSLGLEKFKK 850
851 PEGSWDCELCLVQNKADSTKCLACESAKPGTKSGFKGFDTSSSSSNSAAS 900
901 SSFKFGVSSSSSGPSQTLTSTGNFKFGDQGGFKIGVSSDSGSINPMSEGF 950
951 KFSKPIGDFKFGVSSESKPEEVKKDSKNDNFKFGLSSGLSNPVSLTPFQF 1000
1001 GVSNLGQEEKKEELPKSSSAGFSFGTGVINSTPAPANTIVTSENKSSFNL 1050
1051 GTIETKSASVAPFTCKTSEAKKEEMPATKGGFSFGNVEPASLPSASVFVL 1100
1101 GRTEEKQQEPVTSTSLVFGKKADNEEPKCQPVFSFGNSEQTKDENSSKST 1150
1151 FSFSMTKPSEKESEQPAKATFAFGAQTSTTADQGAAKPVFSFLNNSSSSS 1200
1201 STPATSAGGGIFGSSTSSSNPPVATFVFGQSSNPVSSSAFGNTAESSTSQ 1250
1251 SLLFSQDSKLATTSSTGTAVTPFVFGPGASSNNTTTSGFGFGATTTSSSA 1300
1301 GSSFVFGTGPSAPSASPAFGANQTPTFGQSQGASQPNPPGFGSISSSTAL 1350
1351 FPTGSQPAPPTFGTVSSSSQPPVFGQQPSQSAFGSGTTPNSSSAFQFGSS 1400
1401 TTNFNFTNNSPSGVFTFGANSSTPAASAQPSGSGGFPFNQSPAAFTVGSN 1450
1451 GKNVFSSSGTSFSGRKIKTAVRRRK 1475

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.