 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P49791 from www.uniprot.org...
The NucPred score for your sequence is 0.81 (see score help below)
1 MASGAGGIGGGGGGGKIRTRRCHQGPVKPYQQGRPQHQGILSRVTESVKN 50
51 IVPGWLQRYFNKSENACSCSVNADEVPRWPENREDEREIYVDENTNTDDG 100
101 RTTPEPTGSNTEEPSTTSTASNYPDVLTRPSLHRSHLNFSVLESPALHCQ 150
151 PSTSSAFPIGSSGFSLVKEIKDSTSQHDDDNISTTSGFSSRASEKDIAVS 200
201 KNTSLPPLWSPEAERSHSLSQHTAISSKKPAFNLSAFGTLSTSLGNSSIL 250
251 KTSQLGDSPFYPGKTTYGGAAAAVRQNKVRSTPYQAPVRRQMKAKQLNAQ 300
301 SYGVTSSTARRILQSLEKMSSPLADAKRIPSAVSSPLNSPLDRSGIDSTV 350
351 FQAKKEKVDSQYPPVQRLMTPKPVSIATNRTVYFKPSLTPSGDLRKTNQR 400
401 IDKKNSTVDEKNISRQNREQESGFSYPNFSIPAANGLSSGVGGGGGKMRR 450
451 ERTTHFVASKPSEEEEVEVPLLPQISLPISSSSLPTFNFSSPAISAASSS 500
501 SVSPSQPLSNKVQMTSLGSTGNPVFTFSSPIVKSTQADVLPPASIGFTFS 550
551 VPLAKTELSGPNSSSETVLSSSVTAQDNTVVNSSSSKKRSAPCEDPFTPA 600
601 KILREGSVLDILKTPGFMSPKVDSPALQPTTTSSIVYTRPAISTFSSSGV 650
651 EFGESLKAGSSWQCDTCLLQNKVTDNKCIACQAAKLPLKETAKQTGIGTP 700
701 SKSDKPASTSGTGFGDKFKPAIGTWDCDTCLVQNKPEAVKCVACETPKPG 750
751 TGVKRALPLTVASESPVTASSSTTVTTGTLGFGDKFKRPVGSWECPVCCV 800
801 SNKAEDSRCVSCTSEKPGLVSASSSNSVPVSLPSGGCLGLDKFKKPEGSW 850
851 DCEVCLVQNKADSTKCIACESAKPGTKSEFKGFGTSSSLNPAPSAFKFGI 900
901 PSSSSGLSQTFTSTGNFKFGDQGGFKLGTSSDSGSTNTMNTNFKFPKPTG 950
951 DFKFGVLPDSKPEEIKNDSKNDNFQFGPSSGLSNPASSAPFQFGVSTLGQ 1000
1001 QEKKEELPQSSSAGFSFGAGVANPSSAAIDTTVTSENKSGFNFGTIDTKS 1050
1051 VSVTPFTYKTTEAKKEDASATKGGFTFGKVDSAALSSPSMFVLGRTEEKQ 1100
1101 QEPVTSTSLVFGKKADNEEPKCQPVFSFGNSEQTKDESSSKPTFSFSVAK 1150
1151 PSVKESDQLAKATFAFGNQTNTTTDQGAAKPAFSFLNSSSSSSSTPATSS 1200
1201 SASIFGSSTSSSSPPVAAFVFGQASNPVSSSAFGNSAESSTSQPLLFPQD 1250
1251 GKPATTSSTASAAPPFVFGTGASSNSTVSSGFTFGATTTSSSSGSFFVFG 1300
1301 TGHSAPSASPAFGANQTPTFGQSQGASQPNPPSFGSISSSTALFSAGSQP 1350
1351 VPPPTFGTVSSSSQPPVFGQQPSQSAFGSGTANASSVFQFGSSTTNFNFT 1400
1401 NNNPSGVFTFGASPSTPAAAAQPSGSGGFSFSQSPASFTVGSNGKNMFSS 1450
1451 SGTSVSGRKIKTAVRRKK 1468
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.