 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P49792 from www.uniprot.org...
The NucPred score for your sequence is 0.76 (see score help below)
1 MRRSKADVERYIASVQGSTPSPRQKSMKGFYFAKLYYEAKEYDLAKKYIC 50
51 TYINVQERDPKAHRFLGLLYELEENTDKAVECYRRSVELNPTQKDLVLKI 100
101 AELLCKNDVTDGRAKYWLERAAKLFPGSPAIYKLKEQLLDCEGEDGWNKL 150
151 FDLIQSELYVRPDDVHVNIRLVEVYRSTKRLKDAVAHCHEAERNIALRSS 200
201 LEWNSCVVQTLKEYLESLQCLESDKSDWRATNTDLLLAYANLMLLTLSTR 250
251 DVQESRELLQSFDSALQSVKSLGGNDELSATFLEMKGHFYMHAGSLLLKM 300
301 GQHSSNVQWRALSELAALCYLIAFQVPRPKIKLIKGEAGQNLLEMMACDR 350
351 LSQSGHMLLNLSRGKQDFLKEIVETFANKSGQSALYDALFSSQSPKDTSF 400
401 LGSDDIGNIDVREPELEDLTRYDVGAIRAHNGSLQHLTWLGLQWNSLPAL 450
451 PGIRKWLKQLFHHLPHETSRLETNAPESICILDLEVFLLGVVYTSHLQLK 500
501 EKCNSHHSSYQPLCLPLPVCKQLCTERQKSWWDAVCTLIHRKAVPGNVAK 550
551 LRLLVQHEINTLRAQEKHGLQPALLVHWAECLQKTGSGLNSFYDQREYIG 600
601 RSVHYWKKVLPLLKIIKKKNSIPEPIDPLFKHFHSVDIQASEIVEYEEDA 650
651 HITFAILDAVNGNIEDAVTAFESIKSVVSYWNLALIFHRKAEDIENDALS 700
701 PEEQEECKNYLRKTRDYLIKIIDDSDSNLSVVKKLPVPLESVKEMLNSVM 750
751 QELEDYSEGGPLYKNGSLRNADSEIKHSTPSPTRYSLSPSKSYKYSPKTP 800
801 PRWAEDQNSLLKMICQQVEAIKKEMQELKLNSSNSASPHRWPTENYGPDS 850
851 VPDGYQGSQTFHGAPLTVATTGPSVYYSQSPAYNSQYLLRPAANVTPTKG 900
901 PVYGMNRLPPQQHIYAYPQQMHTPPVQSSSACMFSQEMYGPPALRFESPA 950
951 TGILSPRGDDYFNYNVQQTSTNPPLPEPGYFTKPPIAAHASRSAESKTIE 1000
1001 FGKTNFVQPMPGEGLRPSLPTQAHTTQPTPFKFNSNFKSNDGDFTFSSPQ 1050
1051 VVTQPPPAAYSNSESLLGLLTSDKPLQGDGYSGAKPIPGGQTIGPRNTFN 1100
1101 FGSKNVSGISFTENMGSSQQKNSGFRRSDDMFTFHGPGKSVFGTPTLETA 1150
1151 NKNHETDGGSAHGDDDDDGPHFEPVVPLPDKIEVKTGEEDEEEFFCNRAK 1200
1201 LFRFDVESKEWKERGIGNVKILRHKTSGKIRLLMRREQVLKICANHYISP 1250
1251 DMKLTPNAGSDRSFVWHALDYADELPKPEQLAIRFKTPEEAALFKCKFEE 1300
1301 AQSILKAPGTNVAMASNQAVRIVKEPTSHDNKDICKSDAGNLNFEFQVAK 1350
1351 KEGSWWHCNSCSLKNASTAKKCVSCQNLNPSNKELVGPPLAETVFTPKTS 1400
1401 PENVQDRFALVTPKKEGHWDCSICLVRNEPTVSRCIACQNTKSANKSGSS 1450
1451 FVHQASFKFGQGDLPKPINSDFRSVFSTKEGQWDCSACLVQNEGSSTKCA 1500
1501 ACQNPRKQSLPATSIPTPASFKFGTSETSKTLKSGFEDMFAKKEGQWDCS 1550
1551 SCLVRNEANATRCVACQNPDKPSPSTSVPAPASFKFGTSETSKAPKSGFE 1600
1601 GMFTKKEGQWDCSVCLVRNEASATKCIACQNPGKQNQTTSAVSTPASSET 1650
1651 SKAPKSGFEGMFTKKEGQWDCSVCLVRNEASATKCIACQNPGKQNQTTSA 1700
1701 VSTPASSETSKAPKSGFEGMFTKKEGQWDCSVCLVRNEASATKCIACQCP 1750
1751 SKQNQTTAISTPASSEISKAPKSGFEGMFIRKGQWDCSVCCVQNESSSLK 1800
1801 CVACDASKPTHKPIAEAPSAFTLGSEMKLHDSSGSQVGTGFKSNFSEKAS 1850
1851 KFGNTEQGFKFGHVDQENSPSFMFQGSSNTEFKSTKEGFSIPVSADGFKF 1900
1901 GISEPGNQEKKSEKPLENGTGFQAQDISGQKNGRGVIFGQTSSTFTFADL 1950
1951 AKSTSGEGFQFGKKDPNFKGFSGAGEKLFSSQYGKMANKANTSGDFEKDD 2000
2001 DAYKTEDSDDIHFEPVVQMPEKVELVTGEEDEKVLYSQRVKLFRFDAEVS 2050
2051 QWKERGLGNLKILKNEVNGKLRMLMRREQVLKVCANHWITTTMNLKPLSG 2100
2101 SDRAWMWLASDFSDGDAKLEQLAAKFKTPELAEEFKQKFEECQRLLLDIP 2150
2151 LQTPHKLVDTGRAAKLIQRAEEMKSGLKDFKTFLTNDQTKVTEEENKGSG 2200
2201 TGAAGASDTTIKPNPENTGPTLEWDNYDLREDALDDSVSSSSVHASPLAS 2250
2251 SPVRKNLFRFGESTTGFNFSFKSALSPSKSPAKLNQSGTSVGTDEESDVT 2300
2301 QEEERDGQYFEPVVPLPDLVEVSSGEENEQVVFSHRAKLYRYDKDVGQWK 2350
2351 ERGIGDIKILQNYDNKQVRIVMRRDQVLKLCANHRITPDMTLQNMKGTER 2400
2401 VWLWTACDFADGERKVEHLAVRFKLQDVADSFKKIFDEAKTAQEKDSLIT 2450
2451 PHVSRSSTPRESPCGKIAVAVLEETTRERTDVIQGDDVADATSEVEVSST 2500
2501 SETTPKAVVSPPKFVFGSESVKSIFSSEKSKPFAFGNSSATGSLFGFSFN 2550
2551 APLKSNNSETSSVAQSGSESKVEPKKCELSKNSDIEQSSDSKVKNLFASF 2600
2601 PTEESSINYTFKTPEKAKEKKKPEDSPSDDDVLIVYELTPTAEQKALATK 2650
2651 LKLPPTFFCYKNRPDYVSEEEEDDEDFETAVKKLNGKLYLDGSEKCRPLE 2700
2701 ENTADNEKECIIVWEKKPTVEEKAKADTLKLPPTFFCGVCSDTDEDNGNG 2750
2751 EDFQSELQKVQEAQKSQTEEITSTTDSVYTGGTEVMVPSFCKSEEPDSIT 2800
2801 KSISSPSVSSETMDKPVDLSTRKEIDTDSTSQGESKIVSFGFGSSTGLSF 2850
2851 ADLASSNSGDFAFGSKDKNFQWANTGAAVFGTQSVGTQSAGKVGEDEDGS 2900
2901 DEEVVHNEDIHFEPIVSLPEVEVKSGEEDEEILFKERAKLYRWDRDVSQW 2950
2951 KERGVGDIKILWHTMKNYYRILMRRDQVFKVCANHVITKTMELKPLNVSN 3000
3001 NALVWTASDYADGEAKVEQLAVRFKTKEVADCFKKTFEECQQNLMKLQKG 3050
3051 HVSLAAELSKETNPVVFFDVCADGEPLGRITMELFSNIVPRTAENFRALC 3100
3101 TGEKGFGFKNSIFHRVIPDFVCQGGDITKHDGTGGQSIYGDKFEDENFDV 3150
3151 KHTGPGLLSMANQGQNTNNSQFVITLKKAEHLDFKHVVFGFVKDGMDTVK 3200
3201 KIESFGSPKGSVCRRITITECGQI 3224
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.