SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P51111 from www.uniprot.org...

The NucPred score for your sequence is 0.81 (see score help below)

   1  MKAFESLKSFQQQQQQQQPPPQPPPPPPPPPQPPQPPPQGQPPPPPPLPG    50
51 PAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSLRNSPEFQKLLGIAM 100
101 ELFLLCSDDASRRRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP 150
151 RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAA 200
201 AVPKIMASFGNFANDNEIKVLLKAFIANLKSSSPTVRRTAAGSAVSICQH 250
251 SRRTQYFYNWLLNVLLGLLVPMEEDHPTLLILGVLLTLRCLVPLLQQQVK 300
301 DTSLKGSFGVTRKEMEVSPSAEQLVQVYELTLHHTQHQDHNVVTGALELL 350
351 QQLFRTPPPELLQALTTPGGLGQLTLVREEAGGRGRSGSIVELLAGGGSS 400
401 CSPVLSRKQKGKVLLGEEEALEDDSESRSDVSSSAFAASVKSEIGGELAA 450
451 SSSGVSTPGSVGHDIITEQPRSQHTLQADSVDLSGCDLTSAATDGDEEDI 500
501 LSHSSSQFSAVPSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSS 550
551 EIVLDGADSQYLGVQIGQPQEEDREAAGVLSGEVSDVFRNSSLALQQAHL 600
601 LERMGHSRQPSDSSVDKFVSKDEVAEAGDPESKPCRIKGDIGQPNDDDSA 650
651 PLVHCVRLLSASFLLTGEKKALVPDRDVRVSVKALALSCIGAAVALHPES 700
701 FFSKLYKVPLSTMESTEEQYVSDILNYIDHGDPQVRGATAILCGTLVYSI 750
751 LSRSRLRVGDWLGTIRALTGNTFSLVDCIPLLQKTLKDESSVTCKLACTA 800
801 VRHCVLSLCSSSYSDLGLQLLIDMLPLKNSSYWLVRTELLETLAEIDFRL 850
851 VSFLEAKAESLHRGPHHYTGFLKLQERVLNNVVIYLLGDEDPRVRHVAAT 900
901 TLTRLVPKLFYKCDQGQADPVEAVARDQSSVYLKLLMHETQPPSHFSVST 950
951 ITRIYRGYSLLPSVTDVTMENNLSRVVAAVSHELITSTTRALTFGCCEAL 1000
1001 CVLSAAFPVCTWSLGWHCGVPPLSASDESRKSCTVGMASMILTLLSSAWF 1050
1051 PLDLSAIQDALILAGNLLAASAPKSLRSSWASEEEGSSAATRQEEIWPAL 1100
1101 GDRTLVPMVEQLFSHLLKVINICAHVLDDETPGPAIKAALPSLTNPPSLS 1150
1151 PIRRKGKEKEPGEQTSTPMSPKKGGEASTASRQSDTSGPVTASKSSSLGS 1200
1201 FYHLPSYLRLHDVLKATHANYKVTLDLQNSTEKFGGFLRSALDVLSQILE 1250
1251 LATLQDIGKCVEEVLGYLKSCFSREPMMATVCVQQLLKTLFGTNLASQFD 1300
1301 GLSSNPSKSQCRAQRLGSSSVRPGLYHYCFMAPYTHFTQALADASLRNMV 1350
1351 QADQEHDASGWFDVLQKVSAQLKTNLTSVTKNRADKNAIHNHIRLFEPLV 1400
1401 IKALKQYTTTTSVQLQKQVLDLLAQLVQLRVNYCLLDSDQVFIGFVLKQF 1450
1451 EYIEVGQFRESEAIIPNIFFFLVLLSYERYHSKQIIGIPKIIQLCDGIMA 1500
1501 SGRKAVTHAIPALQPIVHDLFVLRGTNKADAGKELETQKEVVVSMLLRLI 1550
1551 QYHQVLEMFILVLQQCHKENEDKWKRLSRQVADIILPMLAKQQMHIDSHE 1600
1601 ALGVLNTLFEILAPSSLRPVDMLLRSMFITPSTMASVSTVQLWISGILAI 1650
1651 LRVLISQSTEDIVLSRIQELSFSPYLISCPVINRLRDGDSNPTLGERSRG 1700
1701 KQVKNLPEDTFSRFLLQLVGILLEDIVTKQLKVDMSEQQHTFYCQELGTL 1750
1751 LMCLIHIFKSGMFRRITAAATRLFTSDGCEGSFYTLDSLNARVRAMVPTH 1800
1801 PALVLLWCQILLLINHTDHRWWAEVQQTPKRHSLSCTKSLNPQISAEEDS 1850
1851 GSAAQLGMCNREIVRRGALILFCDYVCQNLHDSEHLTWLIVNHIQDLISL 1900
1901 SHEPPVQDFISAIHRNSAASGLFIQAIQSRCENLSTPTTLKKTLQCLEGI 1950
1951 HLSQSGAVLTLYVDRLLGTPFRALARMVDTLACRRVEMLLAANLQSSMAQ 2000
2001 LPEEELNRIQEHLQNTGLAQRHQRLYSLLDRFRLSTVQDSLSPLPPVTSH 2050
2051 PLDGDGHTSLETVNPDKDWYLQLVRSQCWTRSDSALLEGAELVNRIPAED 2100
2101 MSDFMMSSEFNLSLFAPCLSLGMSEIAGSQKSPLFEAARRVTLDRVTNVV 2150
2151 QQLPAVHQVFQPFLPTEPTAYWSKLNDLFGDTTSYQSLTTLARALAQYLV 2200
2201 VLSKVPAPLHLPPEKEGHTVKFVVMTLEALSWHLIHEQIPLSLDLQAGLD 2250
2251 CCCLALQVPGLWGVLSSPEYVTHTCSLIHCVRFILEAIAVQPGDQLLGPE 2300
2301 SRSHTPRAVRKEEVDSDIQNLSHITSACEMVADMVESLQSVLALGHKRNS 2350
2351 TLPSFLTAVLKNIVVSLARLPLVNSYTRVPPLVWKLGWSPKPGGDFGTVF 2400
2401 PEIPVEFLQEKEVLKEFIYRINTLGWTSRTQFEETWATLLGVLVTQPLVM 2450
2451 EQEESPPEEDTERTQIHVLAVQAITSLVLSAMAVPVAGNPAVSCLEQQPR 2500
2501 NKPLKALDTRFGRKLSMIRGIVEQEIQEMVSQRENTATHHSHQAWDPVPS 2550
2551 LLPATTGALISHDKLLLQINSEREPGNMSYKLGQVSIHSVWLGNNITPLR 2600
2601 EEEWDEEEEEEADAPAPTSPPVSPVNSRKHRAGVDIHSCSQFLLELYSRW 2650
2651 ILPSSAARRTPVILISEVVRSLLVVSDLFTDVPQFEMMYLTLTELRRVHP 2700
2701 SEDEILIQYLVPATCKAAAVLGMDKTVAEPVSRLLESTLRSTHLPSQIGA 2750
2751 LHGILYVLECDLLDDTVKQLIPVVSDYLLSNLKGIAHCVNIHSQQHVLVM 2800
2801 CATAFYLMENYPLDVGPEFSASVIQMCGVMLSGSEESTPSVIYHCALRGL 2850
2851 ERLLLSEQLSRLDTESLVKLSVDRVNVQSPHRAMAALGLMLTCMYTGKEK 2900
2901 ASPGRASDPSPATPDSESVIVAMERVSVLFDRIRKGFPCEARVVARILPQ 2950
2951 FLDDFFPPQDVMNKVIGEFLSNQQPYPQFMATVVYKVFQTLHSAGQSSMV 3000
3001 RDWVMLSLSNFTQRTPVAMAMWSLSCFLVSASTSPWVSAILPHVISRMGK 3050
3051 LEQVDVNLFCLVATDFYRHQIEEEFDRRAFQSVFEVVAAPGSPYHRLLAC 3100
3101 LQNVHKVTAC 3110

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.