SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P51112 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MATMEKLMKAFESLKSFQQQQGPPTAEEIVQRQKKEQATTKKDRVSHCLT    50
51 ICENIVAQSLRTSPEFQKLLGIAMEMFLLCSDDSESDVRMVADECLNRII 100
101 KALMDSNLPRLQLELYKEIKKNGASRSLRAALWRFAELAHLIRPQKCRPY 150
151 LVNLLPCLTRITKRQEETIQETLAAAMPKIMAALGHFANDGEIKMLLKSF 200
201 VANLKSSSPTIRRTAASSAVSVCQHSRRTSYFYTWLLNVLLGLLVPVDEE 250
251 HHSHLILGVLLTLRYLMPLLQQQVNTISLKGSFGVMQKEADVQPAPEQLL 300
301 QVYELTLHYTQHWDHNVVTAALELLQQTLRTPPPELLHVLITAGSIQHAS 350
351 VFRQDIESRARSGSILELIAGGGSTCSPLLHRKHRGKMLSGEEDALEDDP 400
401 EKTDVTTGYFTAVGADNSSAAQVDIITQQPRSSQHTIQPGDSVDLSASSE 450
451 QGGRGGGASASDTPESPNDEEDMLSRSSSCGANITPETVEDATPENPAQE 500
501 GRPVGGSGAYDHSLPPSDSSQTTTEGPDSAVTPSDVAELVLDGSESQYSG 550
551 MQIGTLQDEEDEGTATSSQEDPPDPFLRSALALSKPHLFESRGHNRQGSD 600
601 SSVDRFIPKDEPPEPEPDNKMSRIKGAIGHYTDRGAEPVVHCVRLLSASF 650
651 LLTGQKNGLTPDRDVRVSVKALAVSCVGAAAALHPEAFFNSLYLEPLDGL 700
701 RAEEQQYISDVLGFIDHGDPQIRGATAILCAAIIQAALSKMRYNIHSWLA 750
751 SVQSKTGNPLSLVDLVPLLQKALKDESSVTCKMACSAVRHCIMSLCGSTL 800
801 SELGLRLVVDLFALKDSSYWLVRTELLETLAEMDFRLVNFLERKSEALHK 850
851 GEHHYTGRLRLQERVLNDVVIQLLGDDDPRVRHVAASAVSRLVSRLFFDC 900
901 DQGQADPVVAIARDQSSVYLQLLMHETQPPSQLTVSTITRTYRGFNLSNN 950
951 VADVTVENNLSRVVTAVSHAFTSSTSRALTFGCCEALCLLAVHFPICTWT 1000
1001 TGWHCGHISSQSSFSSRVGRSRGRTLSVSQSGSTPASSTTSSAVDPERRT 1050
1051 LTVGTANMVLSLLSSAWFPLDLSAHQDALLLCGNLLAAVAPKCLRNPWAG 1100
1101 EDDSSSSSTNTSGGTHKMEEPWAALSDRAFVAMVEQLFSHLLKVLNICAH 1150
1151 VLDDTPPGPPVKATLPSLTNTPSLSPIRRKGKDKDAVDSSSAPLSPKKGN 1200
1201 EANTGRPTESTGSTAVHKSTTLGSFYHLPPYLKLYDVLKATHANFKVMLD 1250
1251 LHSNQEKFGSFLRAALDVLSQLLELATLNDINKCVEEILGYLKSCFSREP 1300
1301 TMATVCVQQLLKTLFGTNLASQYEGFLSGPSRSQGKALRLGSSSLRPGLY 1350
1351 HYCFMAPYTHFTQALADASLRNMVQAEHEQDTSGWFDVMQKTSNQLRSNI 1400
1401 ANAARHRGDKNAIHNHIRLFEPLVIKALKQYTTSTSVALQRQVLDLLAQL 1450
1451 VQLRVNYCLLDSDQVFIGFVLKQFEYIEVGQFRDSEAIIPNIFFFLVLLS 1500
1501 YERYHSKQIISIPKIIQLCDGIMASGRKAVTHAIPALQPIVHDLFVLRGS 1550
1551 NKADAGKELETQKEVVVSMLLRLVQYHQVLEMFILVLQQCHKENEDKWKR 1600
1601 LSRQIADVILPMIAKQQMHLDSPEALGVLNTLFETVAPSSLRPVDMLLKS 1650
1651 MFTTPVTMASVATVQLWVSGILAVLRVLVSQSTEDIVLSRIHELSLSPHL 1700
1701 LSCHTIKRLQQPNLSPSDQPAGDGQQNQEPNGEAQKSLPEETFARFLIQL 1750
1751 VGVLLDDISSRHVKVDITEQQHTFYCQQLGTLLMCLIHVFKSGMFRRITV 1800
1801 AASRLLKGESGSGHSGIEFYPLEGLNSMVHCLITTHPSLVLLWCQVLLII 1850
1851 DYTNYSWWTEVHQTPKGHSLSCTKLLSPHSSGEGEEKPETRLAMINREIV 1900
1901 RRGALILFCDYVCQNLHDSEHLTWLIVNHVRDLIDLSHEPPVQDFISAVH 1950
1951 RNSAASGLFIQAIQSRCDNLNSPTMLKKTLQCLEGIHLSQSGSLLMLYVD 2000
2001 KLLSTPFRVLARMVDTLACRRVEMLLAETLQNSVAQLPLEELHRIQEYLQ 2050
2051 TSGLAQRHQRFYSLLDRFRATVSDTSSPSTPVTSHPLDGDPPPAPELVIA 2100
2101 DKEWYVALVKSQCCLHGDVSLLETTELLTKLPPADLLSVMSCKEFNLSLL 2150
2151 CPCLSLGVQRLLRGQGSLLLETALQVTLEQLAGATGLLPVPHHSFIPTSH 2200
2201 PQSHWKQLAEVYGDPGFYSRVLSLCRALSQYLLTVKQLPSSLRIPSDKEH 2250
2251 LITTFTCAATEVVVWHLLQDQLPLSVDLQWALSCLCLALQQPCVWNKLST 2300
2301 PEYNTHTCSLIYCLHHIILAVAVSPGDQLLHPERKKTKALRHSDDEDQVD 2350
2351 SVHDNHTLEWQACEIMAELVEGLQSVLSLGHHRNTAFPAFLTPTLRNIII 2400
2401 SLSRLPLVNSHTRVPPLVWKLGWSPQPGGEFGTTLPEIPVDFLQEKDVFR 2450
2451 EFLYRINTLGWSNRTQFEETWATLLGVLVTQPITMDQEEETQQEEDLERT 2500
2501 QLNVLAVQAITSLVLSAMTLPTAGNPAVSCLEQQPRNKSLKALETRFGRK 2550
2551 LAVIRGEVEREIQALVSKRDNVHTYHPYHAWDPVPSLSAASPGTLISHEK 2600
2601 LLLQINTERELGNMDYKLGQVSIHSVWLGNNITPLREEEWGEDEDDEADP 2650
2651 PAPTSPPLSPINSRKHRAGVDIHSCSQFLLELYSQWVIPGSPSNRKTPTI 2700
2701 LISEVVRSLLAVSDLFTERNQFDMMFSTLMELQKLHPPEDEILNQYLVPA 2750
2751 ICKAAAVLGMDKAIAEPVCRLLETTLRSTHLPSRMGALHGVLYVLECDLL 2800
2801 DDTAKQLIPTVSEYLLSNLRAIAHCVNLHNQQHVLVMCAVAFYMMENYPL 2850
2851 DVGTEFMAGIIQLCGVMVSASEDSTPSIIYHCVLRGLERLLLSEQLSRVD 2900
2901 GEALVKLSVDRVNMPSPHRAMAALGLMLTCMYTGKEKASPAARSAHSDPQ 2950
2951 VPDSESIIVAMERVSVLFDRIRKGLPSEARVVARILPQFLDDFFPPQDIM 3000
3001 NKVIGEFLSNQQPYPQFMATVVYKVFQTLHATGQSSMVRDWVLLSLSNFT 3050
3051 QRTPVAMAMWSLSCFFVSASTSQWISALLPHVISRMGSSDVVDVNLFCLV 3100
3101 AMDFYRHQIDEELDRRAFQSVFETVASPGSPYFQLLACLQSIHQDKSL 3148

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.