SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P52593 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MATPSFGNSSPQLTFTHVANFMNDAAADVSAVDAKQLAQIRQFLKANKTN    50
51 LIESLNTIRQNVTSSGDHNKLRSTIANLLQINVDNDPFFAQSEDLSHAVE 100
101 FFMSERSSRLHIVYSLLVNPDIDLETYSFIDNDRFNVVGKLISIISSVIQ 150
151 NYDIITASSLAHDYNNDQDMFTIVSLVQLKKFSDLKFILQILQILNLMIL 200
201 NTKVPVDIVNQWFLQYQNQFVEFCRNINSTDKSIDTSSLQLYKFQNFQDL 250
251 SYLSETLISRISSLFTITTILILGLNTSIAQFDIQSPLYMDTETFDTVNS 300
301 ALENDVATNIVNEDPIFHPMIHYSWSFILYYRRALQSSESFDDSDITKFA 350
351 LFAESHDVLQKLNTLSEILSFDPVYTTVITVFLEFSLNFIPITASTSRVF 400
401 AKIISKAPEQFIENFLTNDTFEKKLSIIKAKLPLLNESLIPLINLALIDT 450
451 EFANFELKDICSFAVTKSSLNDLDYDLIADTITNSSSSSDIIVPDLIELK 500
501 SDLLVAPPLENENSNCLLSIPKSTKGKILTIKQQQQQQQQQNGQQPPTTS 550
551 NLIIFLYKFNGWSLVGRILQNLLHSYMEKGTQLDDLQHELMISIIKLVTN 600
601 VVDPKTSIEKSSEILSYLSNSLDTSASTINGASIIQVIFEIFEISLQRKD 650
651 YTSIVQCCEFMTMLTPNYLHLVSSYLNKSDLLDKYGKTGLSNMILGSVEL 700
701 STGDYTFTIQLLKLTKVFIRESLSLKNIHISKRSKIDIINKLILHAIHIF 750
751 ESYYNWKYNNFLQKFEIAFHLTLIFYDVLHDVFTINPHQKDQLIISSSAN 800
801 KLLQLFLTPMDSIDLAPNTLTNILISPLNTTTKILGDKILGNLYSKVMNN 850
851 SFKLCTLLIAIRGSNRDLKPSNLEKLLFINSSKLVDVYTLPSYVHFKVQI 900
901 IELLSYLVEAPWNDDYPFLLSFLGEAKSMAFLKEVLSDLSSPVQDWNLLR 950
951 SLYIFFTTLLESKQDGLSILFLTGQFASNKKINDESSIDKKSSILTVLQK 1000
1001 NSLLLDSTPEEVSCKLLETITYVLNTWTNSKIFIKDPKFVNSLLAKLKDS 1050
1051 KKLFQKKENLTRDETVSLIKKYKLISRIVEIFALCIYNSTDSNSEILNFL 1100
1101 NQEDLFELVHHFFQIDGFNKTFHDELNLKFKEKWPSLELQSFQKIPLSRI 1150
1151 NENENFGYDIPLLDIVLKADRSWNEPSKSQTNFKEEITDASLNLQYVNYE 1200
1201 ISTAKAWGALITTFVKRSTVPLNDGFVDLVEHFLKLNIDFGSDKQMFTQI 1250
1251 YLERIELSFYILYSFKLSGKLLKEEKIIELMNKIFTIFKSGEIDFIKNIG 1300
1301 KSLKNNFYRPLLRSVLVLLELVSSGDRFIELISDQLLEFFELVFSKGVYL 1350
1351 ILSEILCQINKCSTRGLSTDHTTQIVNLEDNTQDLLLLLSLFKKITNVNP 1400
1401 SKNFNVILASSLNEVGTLKVILNLYSSAHLIRINDEPILGQITLTFISEL 1450
1451 CSIEPIAAKLINSGLYSVLLESPLSVAIQQGDIKPEFSPRLHNIWSNGLL 1500
1501 SIVLLLLSQFGIKVLPETCLFVSYFGKQIKSTIYNWGDNKLAVSSSLIKE 1550
1551 TNQLVLLQKMLNLLNYQELFIQPKNSDDQQEAVELVIGLDSEHDKKRLSA 1600
1601 ALSKFLTHPKYLNSRIIPTTLEEQQQLEDESSRLEFVKGISRDIKALQDS 1650
1651 LFKDV 1655

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.