SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P53355 from www.uniprot.org...

The NucPred score for your sequence is 0.71 (see score help below)

   1  MTVFRQENVDDYYDTGEELGSGQFAVVKKCREKSTGLQYAAKFIKKRRTK    50
51 SSRRGVSREDIEREVSILKEIQHPNVITLHEVYENKTDVILILELVAGGE 100
101 LFDFLAEKESLTEEEATEFLKQILNGVYYLHSLQIAHFDLKPENIMLLDR 150
151 NVPKPRIKIIDFGLAHKIDFGNEFKNIFGTPEFVAPEIVNYEPLGLEADM 200
201 WSIGVITYILLSGASPFLGDTKQETLANVSAVNYEFEDEYFSNTSALAKD 250
251 FIRRLLVKDPKKRMTIQDSLQHPWIKPKDTQQALSRKASAVNMEKFKKFA 300
301 ARKKWKQSVRLISLCQRLSRSFLSRSNMSVARSDDTLDEEDSFVMKAIIH 350
351 AINDDNVPGLQHLLGSLSNYDVNQPNKHGTPPLLIAAGCGNIQILQLLIK 400
401 RGSRIDVQDKGGSNAVYWAARHGHVDTLKFLSENKCPLDVKDKSGEMALH 450
451 VAARYGHADVAQLLCSFGSNPNIQDKEEETPLHCAAWHGYYSVAKALCEA 500
501 GCNVNIKNREGETPLLTASARGYHDIVECLAEHGADLNACDKDGHIALHL 550
551 AVRRCQMEVIKTLLSQGCFVDYQDRHGNTPLHVACKDGNMPIVVALCEAN 600
601 CNLDISNKYGRTPLHLAANNGILDVVRYLCLMGASVEALTTDGKTAEDLA 650
651 RSEQHEHVAGLLARLRKDTHRGLFIQQLRPTQNLQPRIKLKLFGHSGSGK 700
701 TTLVESLKCGLLRSFFRRRRPRLSSTNSSRFPPSPLASKPTVSVSINNLY 750
751 PGCENVSVRSRSMMFEPGLTKGMLEVFVAPTHHPHCSADDQSTKAIDIQN 800
801 AYLNGVGDFSVWEFSGNPVYFCCYDYFAANDPTSIHVVVFSLEEPYEIQL 850
851 NQVIFWLSFLKSLVPVEEPIAFGGKLKNPLQVVLVATHADIMNVPRPAGG 900
901 EFGYDKDTSLLKEIRNRFGNDLHISNKLFVLDAGASGSKDMKVLRNHLQE 950
951 IRSQIVSVCPPMTHLCEKIISTLPSWRKLNGPNQLMSLQQFVYDVQDQLN 1000
1001 PLASEEDLRRIAQQLHSTGEINIMQSETVQDVLLLDPRWLCTNVLGKLLS 1050
1051 VETPRALHHYRGRYTVEDIQRLVPDSDVEELLQILDAMDICARDLSSGTM 1100
1101 VDVPALIKTDNLHRSWADEEDEVMVYGGVRIVPVEHLTPFPCGIFHKVQV 1150
1151 NLCRWIHQQSTEGDADIRLWVNGCKLANRGAELLVLLVNHGQGIEVQVRG 1200
1201 LETEKIKCCLLLDSVCSTIENVMATTLPGLLTVKHYLSPQQLREHHEPVM 1250
1251 IYQPRDFFRAQTLKETSLTNTMGGYKESFSSIMCFGCHDVYSQASLGMDI 1300
1301 HASDLNLLTRRKLSRLLDPPDPLGKDWCLLAMNLGLPDLVAKYNTSNGAP 1350
1351 KDFLPSPLHALLREWTTYPESTVGTLMSKLRELGRRDAADFLLKASSVFK 1400
1401 INLDGNGQEAYASSCNSGTSYNSISSVVSR 1430

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.