| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P54132 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAAVPQNNLQEQLERHSARTLNNKLSLSKPKFSGFTFKKKTSSDNNVSVT 50
51 NVSVAKTPVLRNKDVNVTEDFSFSEPLPNTTNQQRVKDFFKNAPAGQETQ 100
101 RGGSKSLLPDFLQTPKEVVCTTQNTPTVKKSRDTALKKLEFSSSPDSLST 150
151 INDWDDMDDFDTSETSKSFVTPPQSHFVRVSTAQKSKKGKRNFFKAQLYT 200
201 TNTVKTDLPPPSSESEQIDLTEEQKDDSEWLSSDVICIDDGPIAEVHINE 250
251 DAQESDSLKTHLEDERDNSEKKKNLEEAELHSTEKVPCIEFDDDDYDTDF 300
301 VPPSPEEIISASSSSSKCLSTLKDLDTSDRKEDVLSTSKDLLSKPEKMSM 350
351 QELNPETSTDCDARQISLQQQLIHVMEHICKLIDTIPDDKLKLLDCGNEL 400
401 LQQRNIRRKLLTEVDFNKSDASLLGSLWRYRPDSLDGPMEGDSCPTGNSM 450
451 KELNFSHLPSNSVSPGDCLLTTTLGKTGFSATRKNLFERPLFNTHLQKSF 500
501 VSSNWAETPRLGKKNESSYFPGNVLTSTAVKDQNKHTASINDLERETQPS 550
551 YDIDNFDIDDFDDDDDWEDIMHNLAASKSSTAAYQPIKEGRPIKSVSERL 600
601 SSAKTDCLPVSSTAQNINFSESIQNYTDKSAQNLASRNLKHERFQSLSFP 650
651 HTKEMMKIFHKKFGLHNFRTNQLEAINAALLGEDCFILMPTGGGKSLCYQ 700
701 LPACVSPGVTVVISPLRSLIVDQVQKLTSLDIPATYLTGDKTDSEATNIY 750
751 LQLSKKDPIIKLLYVTPEKICASNRLISTLENLYERKLLARFVIDEAHCV 800
801 SQWGHDFRQDYKRMNMLRQKFPSVPVMALTATANPRVQKDILTQLKILRP 850
851 QVFSMSFNRHNLKYYVLPKKPKKVAFDCLEWIRKHHPYDSGIIYCLSRRE 900
901 CDTMADTLQRDGLAALAYHAGLSDSARDEVQQKWINQDGCQVICATIAFG 950
951 MGIDKPDVRFVIHASLPKSVEGYYQESGRAGRDGEISHCLLFYTYHDVTR 1000
1001 LKRLIMMEKDGNHHTRETHFNNLYSMVHYCENITECRRIQLLAYFGENGF 1050
1051 NPDFCKKHPDVSCDNCCKTKDYKTRDVTDDVKSIVRFVQEHSSSQGMRNI 1100
1101 KHVGPSGRFTMNMLVDIFLGSKSAKIQSGIFGKGSAYSRHNAERLFKKLI 1150
1151 LDKILDEDLYINANDQAIAYVMLGNKAQTVLNGNLKVDFMETENSSSVKK 1200
1201 QKALVAKVSQREEMVKKCLGELTEVCKSLGKVFGVHYFNIFNTVTLKKLA 1250
1251 ESLSSDPEVLLQIDGVTEDKLEKYGAEVISVLQKYSEWTSPAEDSSPGIS 1300
1301 LSSSRGPGRSAAEELDEEIPVSSHYFASKTRNERKRKKMPASQRSKRRKT 1350
1351 ASSGSKAKGGSATCRKISSKTKSSSIIGSSSASHTSQATSGANSKLGIMA 1400
1401 PPKPINRPFLKPSYAFS 1417
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.