SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P54276 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MSRQSTLYSFFPKSPALGDTKKAAAEASRQGAAASGASASRGGDAAWSEA    50
51 EPGSRSAAVSASSPEAKDLNGGLRRASSSAQAVPPSSCDFSPGDLVWAKM 100
101 EGYPWWPCLVYNHPFDGTFIRKKGKSVRVHVQFFDDSPTRGWVSKRMLKP 150
151 YTGSKSKEAQKGGHFYSSKSEILRAMQRADEALSKDTAERLQLAVCDEPS 200
201 EPEEEEETEVHEAYLSDKSEEDNYNESEEEAQPSVQGPRRSSRQVKKRRV 250
251 ISDSESDIGGSDVEFKPDTKQEGSSDDASSGVGDSDSEDLGTFGKGAPKR 300
301 KRAMVAQGGLRRKSLKKETGSAKRATPILSETKSTLSAFSAPQNSESQTH 350
351 VSGGGNDSSGPTVWYHETLEWLKPEKRRDEHRRRPDHPEFNPTTLYVPEE 400
401 FLNSCTPGMRKWWQLKSQNFDLVIFYKVGKFYELYHMDAVIGVSELGLIF 450
451 MKGNWAHSGFPEIAFGRFSDSLVQKGYKVARVEQTETPEMMEARCRKMAH 500
501 VSKFDRVVRREICRIITKGTQTYSVLDGDPSENYSRYLLSLKEKEEETSG 550
551 HTRVYGVCFVDTSLGKFFIGQFSDDRHCSRFRTLVAHYPPVQILFEKGNL 600
601 STETKTVLKGSLSSCLQEGLIPGSQFWDATKTLRTLLEGGYFTGNGDSST 650
651 VLPLVLKGMTSESDSVGLTPGEESELALSALGGIVFYLKKCLIDQELLSM 700
701 ANFEEYFPLDSDTVSTVKPGAVFTKASQRMVLDAVTLNNLEIFLNGTNGS 750
751 TEGTLLERLDTCHTPFGKRLLKQWLCAPLCSPSAISDRLDAVEDLMAVPD 800
801 KVTEVADLLKKLPDLERLLSKIHNVGSPLKSQNHPDSRAIMYEETTYSKK 850
851 KIIDFLSALEGFKVMCKVSGLLEEVAGGFTSKTLKQVVTLQSKSPKGRFP 900
901 DLTAELQRWDTAFDHEKARKTGLITPKAGFDSDYDQALADIRENEQSLLE 950
951 YLDKQRSRLGCKSIVYWGIGRNRYQLEIPENFATRNLPEEYELKSTKKGC 1000
1001 KRYWTKTIEKKLANLINAEERRDTSLKDCMRRLFCNFDKNHKDWQSAVEC 1050
1051 IAVLDVLLCLANYSQGGDGPMCRPEIVLPGEDTHPFLEFKGSRHPCITKT 1100
1101 FFGDDFIPNDILIGCEEEAEEHGKAYCVLVTGPNMGGKSTLIRQAGLLAV 1150
1151 MAQLGCYVPAEKCRLTPVDRVFTRLGASDRIMSGESTFFVELSETASILR 1200
1201 HATAHSLVLVDELGRGTATFDGTAIANAVVKELAETIKCRTLFSTHYHSL 1250
1251 VEDYSKSVCVRLGHMACMVENECEDPSQETITFLYKFIKGACPKSYGFNA 1300
1301 ARLANLPEEVIQKGHRKAREFERMNQSLQLFREVCLATEKPTINGEAIHR 1350
1351 LLALINGL 1358

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.