SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P54675 from www.uniprot.org...

The NucPred score for your sequence is 0.91 (see score help below)

   1  MRQIVTGVIHQTTQSQQIPNVINSNQIQFSNEPMVVGSIEDFDIDSEVPP    50
51 LAINLQRSINNNNNNNNNNNNNNNNNNNNNNNNNNNNTQPCTTVFLDRDS 100
101 CVNVKATIDLLKEQLEFTIKDLIDFKENYDKLESTEQFKQWSNLIKNIKE 150
151 NSLNNSNIYLTIPTTQNLINNNNNNNNNNNNNNNNNNNNNNNNNNNVIIP 200
201 SASTENKEENDNNNSNNNNNINLSPDSSITKDINITENKITEIKTTETKE 250
251 TSTGTSPLEKSPSKGFIISPKKPEEENEIEGETINNIAITNYTQGPSMLT 300
301 LMKKKLENIKKNNNNNNNNGNGNNNSNNNNSNSNNNNNGISPSSSPPSHL 350
351 NGNNNNNNSNNTNSNNTTNATTNSVGFSITMTNSNSLSVSKRMNKFKSWT 400
401 SSKPTSSSIGFASSPQNNGKPLNISGSSRFFTSRQDSKIDLLKSPSSSPP 450
451 TQSDIFNENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNEELINNNNNN 500
501 NNDENYKIEETEESLKELLEKEKLENEEREKILKERNEIDNLKKKNHLSK 550
551 GYFMRACNASNDDGLEEEDIPLQDEHWETNVIVLLPCRHHVKVPGSSSSS 600
601 IDSIRQLAWASGKMQGHLNLEKDEKFFTLRWCNKDVVFDQDTPLGHLIQY 650
651 NLNYNNPTQKPTNIKLELVLEDELCKERLVDLQSLEINNGRPSIWKSHID 700
701 DVLSFNRKLRELAMLAKPQSNVPAARLTPYPPPKTIPEFFVIRVHLFKNQ 750
751 TKSLRCANNHTAFSLMTILSEKLKNTTPFDPTQYRFLITGINQYVDPNVP 800
801 LLSVEYIVEKIKRKGEIDLTMVELLSLGLIIQQQQQQQQQQQQQQQQQQI 850
851 ENIDDENILKLNNGILNVLSKIEKPIREKDNCISSLTVTENLQVRLLHAH 900
901 EIFASKASEIIGTDSPSIQLFIEAAVYFGGELLATQSSKLVSFQDTVVWN 950
951 EWVNIPLAVSNIPNGARMCLGLNARYRGDIFNIGWVGHRLFDSKGILNTF 1000
1001 APFSLLLWPGKINPIGTCVDNLESKDQAIIIAFEFKDYVVPKTIHYEDDL 1050
1051 IELISKDENGNELPVVTMEEMDRVEQIILQDPLYSLNKEERLLIWKSRYF 1100
1101 CHTKPQALSKLLQSVEWTNYKQVGEAFQLLKIWPTLSAVDALELLDPKFA 1150
1151 DCVEIREYAVKCLDQMSDYELEIYMLQLVQAIKHDVFHNSVLSLFLIGRV 1200
1201 WQNMQVLGHPFFWHLRADIDNQEVCERFRVLSSGFLRYAPTQLMESFKRE 1250
1251 ITTLRILENLAKRVKEVPYEKRKQYVENNLREEQSFPTELFVPFDPSIRI 1300
1301 LNIIPEKCKSMDSAKVPLWVTFKNADPFAPPLQMIAKTGDDLRQDILTLQ 1350
1351 LLRLMDHMWKSQDLDLHMTIYRCIATGMGTGLIEVVPNSETAARIQAGAG 1400
1401 GVSGAFKQTPIANWLKNHNQTENSYQKAVSKFTLSCAGYCVATYVLGIGD 1450
1451 RHNDNIMVDIHGHLFHIDFGHFLGNFKTFAGFQREKAPFVLTPDFVYVIG 1500
1501 GKDSPNFAFFVDICCKAFNIIRSNAHVFINMFELMLSTGIPELRSENDIV 1550
1551 YLRDKFRLDLTDAEASEYFKKLIHESIGTLTTTINFAIHIMAHRKNLVSG 1600
1601 NSAPKIGSASSLNLNKNKPSSQSKLDLSRSDLSRSDSSRSDSSRLDLSRS 1650
1651 DKKNNKDNKEKEKEKEKEKEKENNDNNDKDNNNNSNNDTEKENSIDK 1697

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.