 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P55824 from www.uniprot.org...
The NucPred score for your sequence is 0.79 (see score help below)
1 MTFDTRRHTTGQPGSTAPSSSSSTTSTTTTTTSPAQSAGSGSGIGTGTGT 50
51 VANSSLPGGGSGSLDGNQDQQPATDSQSSDDVAASLSANSVDSTITIVPP 100
101 EKLISSFPTTKLRSLTQKISNPRWVVPVLPEQELEVLLNAAIELTQAGVD 150
151 HDCEPCVEFYRNGLSTSFAKILTDEAVNSWKNNIHHCILVSCGKLLHLIA 200
201 IHMQRDNPYLLDLLAIVFDPENKFNTFNAGRQPECFAAPDYIWGQLDSNK 250
251 MYARPPPEPKNARGWLVDLINRFGQLGGFDNLLERFNIGLELLKRNQNKC 300
301 TGKNISVEGRVENGAQDNRLTLALIHSLLRPFGQCYELLMPATIAKYFMP 350
351 TWNVVLDLLDSFTDEELKREVKPEGRNDYINGIVKSARLLASRLTGQEEL 400
401 IRDLEMFRLKMILRLLQVSSFNGKMNALNEINKVLSSVAYFSHRSQPLPH 450
451 CMPEDEMDWLTADRMAQWIKSSDVLGVVLKDSLHQPQYVEKLEKIIRFLI 500
501 KEQALTLDDLDAVWRAQAGKHEAIVKNVHDLLAKLAWDFTPEQLDHLFEA 550
551 FQASMTTANKRQRERLLELIRRLAEDDKNGVMAQKVLKLFWTLAHSQEVP 600
601 PEVLDQALGAHVKILDYSCSQERDAQKTIWLDKCVDELKSGDGWVLPALR 650
651 LIRDICCLYDTTTNHAQRTQTSTNRQQVIERLQNDYSLVILVTNSLTAYM 700
701 EKVRQMVTDSPGLDATRILIDGRFPHHVQIAERLEFLKFLLKDGQLWLCA 750
751 DQAKQIWHCLAVNAVFPADREECFRWFGKLMGEEPDLDPGINKDFFENNI 800
801 LQLDPHLLTESGIKCFERFFKAVNSKEDKLKAIHRGYMLDNEDLIGKDYL 850
851 WRVITTGGEEIASKAIDLLKEVSTALGPRLQENIAEFHEMFIGECCSRLR 900
901 THYGNIVILGKTQLQEELDAPDQSDNTNDESKDSKMRFIEAEKMCRILKV 950
951 LQEYVKECDRSFSGDRVHLPLSRVTRGKNTILYIRFQNPGRSIDDMEIVT 1000
1001 HSNETMAAFKRNLLKRIKGTSTANIKVDLFYANDEMIGVSDEINPLYQYT 1050
1051 IRDKMNLTAKLTPVGTGLASSPDSSSDSSTGSPPRPCPDMQRVESESTLP 1100
1101 GVIISQNYQYTEFFLKLYQLGSDLEHGRLRDSAKVLLHLLPCDRQTIRQL 1150
1151 KIMCKVPKAAVTVAVTGDKIAKDEEEKLYPTEQAGIEDEEEHCTPEQMFL 1200
1201 HPTPAQVLYNLSVLHGLLIPALDPLGESALLVQSAWMHSGCAHFVLELLT 1250
1251 KNNFLPSADMHTKRASFQCVLRLAKLFLYIVGSVLSRVGDEPMICDLDNG 1300
1301 SRSQVDILKQNFSTMPSSSQGTLRAISAKLAVILAREMLSASPEGDRCRT 1350
1351 LFSSTLQWSCPDISTIKAVVQLAWASSCGNLQALGNSSGDFEDEVIVPDG 1400
1401 QDFSMCKEALEVLTISFILNPSANEALTSDPNWPKFITSIVLKNPLRHVR 1450
1451 QVASEQLFLASTYCAGDRRPFVYMVNLLVGALKTLVPQYESTCAEFFSVL 1500
1501 CRTLSYGCIYNWPLQISEGLLGDEIKWLQRIRENVHATGDTQVHEELLEG 1550
1551 HLCLAKELMFFLGADSKAQLNELIHELIDDFLFTASREFLHLRRHGSLRQ 1600
1601 DTVPPPVCRSPHTIAAACDLLIALCQLCVPNMKLLTNTLIDFVCTDTDPL 1650
1651 REWDYLPPVGARPTKGFCGLKNAGATCYMNSVLQQLYMVPAVRVGILRAH 1700
1701 GAATTDGEDFSGDSDLTGGGLGSALFSGPASALVSLPSSSSTIEDGLHDV 1750
1751 RKNYHVVILKHVQAIFAHLGHSALQYYVPRGLWTHFKLLGEPVNLREQQD 1800
1801 AVEFFMSLLESLDEGLKALGQPQLMNATLGGSFSDQKICQECPHRYSKEE 1850
1851 PFSVFSVDIRNHSSLTESLEQYVKGELLEGADAYHCDKCDKKVVTVKRVC 1900
1901 VKKLPPVLAIQLKRFEYDYERVCAIKFNDYFEFPRILDMEPYTVSGLAKL 1950
1951 EGEVVEVGDNCQTNVETTKYELTGIVVHSGQASGGHYFSYILSKNPANGK 2000
2001 CQWYKFDDGEVTECKMHEDEEMKAECFGGEYMGETYDNNLKRMQYRRQKR 2050
2051 WWNAYMLFYTRCDQTPVQYEPSVEQLSLAESRNMVLPLPKPIERSVRHQN 2100
2101 IRFLHSRSIFSVEFFNFIKKLVSCNLLSARSNKITPAAEELSLLGVQLAS 2150
2151 QFLFHTGFRTKKSLRGPVMEWYDALSHHIRSSALVRKWFANHALLSPPSR 2200
2201 LGEYILMAPSPDVRTVFVKLVVFFCHFAINDEPLTGYDGANLCEQVLISV 2250
2251 LRLLKSEAADYGKHLPHYFSLFSMYVGLGTREKQQLLRLNVPLQFIQVAL 2300
2301 DDGPGPAIKYQYPEFSKLHQVVSHLIRCSDVSEKCQSSNQNARPLSNPFK 2350
2351 DPNVAHEELTPLSTECMDLLFNRTGYIKKVIEDTNVGDEGLKLLQYCSWE 2400
2401 NPHFSRAVLTELLWQCGFAYCHDMRHHTDLLLNILLIDDSWQHHRIHNAL 2450
2451 NGVAEEREGLLETIQRAKTHYQKRAYQIIKCLTQLFHKSPIALQMLHTNS 2500
2501 NITRHWSIAVEWLQGELDRQRGIGCQYNSYSWSPPAQSNDNTNGYMLERS 2550
2551 QSAKNTWSMAFELCPDEVSEKTDENNEPNLETNMDENKSEPVAQPGGVLE 2600
2601 GSTGGTEQLPENKTPTTSSPSTAAWPARGDSNAIPRLSRQLFGAYTSTGS 2650
2651 GSTSGGSAPTSALTTTAGSGANSETESSAQETTGETTINGLTNSLDQMEI 2700
2701 TAKKKCRRVIIKKLVESKDEEDATTATTAATTEVTTSPATAIATAATLEP 2750
2751 AGMSELTTMVEKNLIISQENPQAKSSLQ 2778
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.