SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P55937 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MDGASAKQDGLWESKSSSDVSSCPEASLETVGSLARLPDQQDTAQDASVE    50
51 VNRGFKEEGSPDRSSQVAICQNGQIPDLQLSLDPTTSPVGPDASTGVDGF 100
101 HDNLRNSQGTSAEGSVRKEALQSLRLSLPMQETQLCSTASSLPLEKEEQV 150
151 RLQARKRLEEQLMQYRVKRHRERSSQPATKMKLFSTLDPELMLNPENLPR 200
201 ASTVAVTKEYSFLRTSVPRGPKVGSLGLLAHSKEKKNSKSSKIRSLADYR 250
251 TEDPSDSGGLGSTADAVGSSLKQSRSSTSVVSEVSPSSETDNRVESASMT 300
301 GDSVSEADGNESDSSSHSSLSARGACGVLGNVGMPGTAYMVDGQEISAEA 350
351 LGQFPSIKDVLQAAAAQHQDQNQEANGEVRSRRDSICSSVSMESSLAEPQ 400
401 DELLQILKDKRRLEGQVEALSLEASQALQEKAELQAQLAALSTRLQAQVE 450
451 HSHSSQQKQDSLSSEVDTLKQSCWDLGRAMTDLQSMLEAKNASLASSNND 500
501 LQVAEEQYQRLMAKVEDMQRNILSKDNTVHDLRQQMTALQSQLQQVQLER 550
551 TTLTSKLQASQAEITSLQHARQWYQQQLTLAQEARVRLQGEMAHIQVGQM 600
601 TQAGLLEHLKLENVSLSHQLTETQHRSIKEKERIAVQLQSIEADMLDQEA 650
651 AFVQIREAKTMVEEDLQRRLEEFEGEREQLQKVADAAASLEQQLEQVKLT 700
701 LFQRDQQLAALQQEHLDVIKQLTSTQEALQAKGQSLDDLHTRYDELQARL 750
751 EELQREADSREDAIHFLQNEKIVLEVALQSAKSDKEELDRGARRLEEDTE 800
801 ETSGLLEQLRQDLAVKSNQVEHLQQETATLRKQMQKVKEQFVQQKVMVEA 850
851 YRRDATSKDQLINELKATKKRLDSEMKELRQELIKLQGEKKTVEVEHSRL 900
901 QKDMSLVHQQMAELEGHLQSVQKERDEMEIHLQSLKFDKEQMIALTEANE 950
951 TLKKQIEELQQEAKKAITEQKQKMKRLGSDLTSAQKEMKTKHKAYENAVS 1000
1001 ILSRRLQEALASKEATDAELNQLRAQSTGGSSDPVLHEKIRALEVELQNV 1050
1051 GQSKILLEKELQEVITMTSQELEESREKVLELEDELQESRGFRRKIKRLE 1100
1101 ESNKKLALELEHERGKLTGLGQSNAALREHNSILETALAKREADLVQLNL 1150
1151 QVQAVLQRKEEEDRQMKQLVQALQVSLEKEKMEVNSLKEQMAAARIEAGH 1200
1201 NRRHFKAATLELSEVKKELQAKEHLVQTLQAEVDELQIQDGKHSQEIAQF 1250
1251 QTELAEARTQLQLLQKKLDEQMSQQPTGSQEMEDLKWELDQKEREIQSLK 1300
1301 QQLDLTEQQGKKELEGTQQTLQTIKSELEMVQEDLSETQKDKFMLQAKVS 1350
1351 ELKNNMKTLLQQNQQLKLDLRRGAAKKKEPKGESNSSSPATPIKIPDCPV 1400
1401 PASLLEELLRPPPAVSKEPLKNLNNCLQQLKQEMDSLQRQMEEHTITVHE 1450
1451 SLSSWAQVEAAPAEHAHPRGDTKLHNQNSVPRDGLGQ 1487

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.