 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P56720 from www.uniprot.org...
The NucPred score for your sequence is 0.65 (see score help below)
1 MDELPFGEAALEQALAEVCEMDAALLTDIEDMLQLINNQDSDFPGLFDAP 50
51 YAGGETGDTGPSSPGASSPESFSSPASLGSSLEAFLGGPKVTPAPLSPPP 100
101 SAPTAVKMYPSVPPFSPGPGIKEEPVPLTILQPPAPQPSPGTLLPPSFPP 150
151 PPVQLSPAPVLGYSSLPSGFSGTLPGNTQQTPSSLPLGSTPGISPTPLHT 200
201 QVQSSAAQQPPPASAAPRMSTVASQIQQVPVVLQPHFIKADSLLLTAVKT 250
251 DTGATMKTAGINTLAPGTAVQAGPLQTLVSGGTILATVPLVVDTDKLPIH 300
301 RLAAGGKALGSAQSRGEKRTAHNAIEKRYRSSINDKIVELKDLVVGTEAK 350
351 LNKSAVLRKAIDYIRFLQHSNQKLKQENLTLRSAHKSKSLKDLVSACGSG 400
401 GGTDVSMEGMKPEVVETLTPPPSDAGSPSQSSPLSLGSRGSSSGGSDSEP 450
451 DSPAFEDNQVKAQRLPSHSRGMLDRSRLALCVLVFLCLTCNPLASLFGWG 500
501 ILTPSDASGVHRSSGRSMLEAESRDGSNWTQWLLPPLVWLANGLLVLACL 550
551 ALLFVYGEPVTRPHSGPAVHFWRHRKQADLDLARGDFAQAAQQLWLALQA 600
601 LGRPLPTSNLDLACSLLWNLVRHLLQRLWVGRWLAGQAGGLQRDYRLRKD 650
651 ARASARDAAVVYHKLHQLHAMGKYTGGHLVASNLALSALNLAECAGDAIS 700
701 MATLAEIYVAAALRVKTSLPRALHFLTRFFLSSARQACLAQSGAVPLAMQ 750
751 WLCHPVGHRFFVDGDWAVHGAPQESLYSVAGNPVDPLAQVTRLFCEHLLE 800
801 RALNCIAQPSPGAADGDREFSDALGYLQLLNSCSDAVGAPACSFSVSSSM 850
851 ATTTGTDPVAKWWASLTAVVIHWLRRDEEAAERLYPLVEHIPQVLQETER 900
901 PLPRAALYSFKAARALLDHRKVESSPASLAICEKASGYLRDSLASTSTAS 950
951 SIDKAMQLLLCDLLLVARTSLWRRQQSAASAQGAHGTSNGPQASALELRG 1000
1001 FQHDLSSLRRLAQSFRPAMRRVFLHEATARLMAGASPARTHQLLDRSLRR 1050
1051 RAGSSGKGGAAAELEPRPTWREHTEALLLASCYLPPAFLSAPGQRVSMLA 1100
1101 EAARTVEKLGDHRLLLDCQQMLLRLGGGTTVTSS 1134
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.