SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P56764 from www.uniprot.org...

The NucPred score for your sequence is 0.86 (see score help below)

   1  MAERANLVFHNKVIDGTAIKRLISRLIDHFGMAYTSHILDQVKTLGFQQA    50
51 TATSISLGIDDLLTIPSKGWLVQDAEQQSWILEKHHHYGNVHAVEKLRQS 100
101 IEIWYATSEYLRQEMNPNFRMTDPFNPVHMMSFSGARGNASQVHQLVGMR 150
151 GLMSDPQGQMIDLPIQSNLREGLSLTEYIISCYGARKGVVDTAVRTSDAG 200
201 YLTRRLVEVVQHIVVRRTDCGTIRGISVSPRNKNRMMSERIFIQTLIGRV 250
251 LADDIYIGSRCVAFRNQDLGIGLVNRLITFGTQSISIRTPFTCRSTSWIC 300
301 RLCYGRSPTHGDLVELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFTGGT 350
351 AEHVRAPYNGKIKFNEDLVHPTRTRHGHPAFLCYIDLSVIIESEDIIHSV 400
401 TIPPKSFLLVQNDQYVESEQVIAEIREGTYTFHFKERVRKYIYSDSEGEM 450
451 HWSTDVSHAPEFTYSNVHLLPKTSHLWILSGGSCGSSLIRFSIHKDQDQM 500
501 NIPFLSAERKSISSLSVNNDQVSQKFFSSDFADPKKLGIYDYSELNGNLG 550
551 TSHYNLIYSAIFHENSDLLAKRRRNRFLIPFQSIQEQEKEFIPQSGISVE 600
601 IPINGIFRRNSIFAFFDDPRYRRKSSGILKYGTLKADSIIQKEDMIEYRG 650
651 VQKIKTKYEMKVDRFFFIPEEVHILPESSAIMVQNYSIIGVDTRLTLNIR 700
701 SQVGGLIRVEKKKKRIELKIFSGDIHFPDKTDKISRHSGILIPPGRGKKN 750
751 SKESKKFKNWIYVQRITPTKKKFFVLVRPVATYEIADSINLATLFPQDLF 800
801 REKDNIQLRVFNYILYGNGKPTRGISDTSIQLVRTCLVLNWDKNSSLEEV 850
851 RAFFVEVSTKGLIQDFIRIGLVKSHISYIRKRNNSPDSGLISADHMNPFY 900
901 SISPKSGILQQSLRQNHGTIRMFLNRNKESQSLLILSSSNCFRMGPFNHV 950
951 KHHNVINQSIKKNTLITIKNSSGPLGTATPISNFYSFLPLLTYNQISLIK 1000
1001 YFQLDNLKYIFQKINSYLIDENGIILNLDPYSNVVLNPFKLNWYFLHQNY 1050
1051 HHNYCEETSTIISLGQFFCENVCIAKKEPHLKSGQVLIVQRDSAVIRSAK 1100
1101 PYLATPGAKVHGHYSEILYEGDTLVTFIYEKSRSGDITQGLPKVEQVLEV 1150
1151 RSIDSISLNLEKRIKGWNKCITRILGIPWGFLIGAELTIVQSRISLVNKI 1200
1201 QKVYRSQGVQIHNRHIEIIVRQITSKVLVSEEGMSNVFLPGELIGLLRAE 1250
1251 RTGRALEEAICYRAVLLGITRASLNTQSFISEASFQETARVLAKAALRGR 1300
1301 IDWLKGLKENVVLGGVIPAGTGFNKGLVHCSRQHTNIILEKKTKNLALFE 1350
1351 GDMRDILFYHREFCDSSISKSDFSRI 1376

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.