 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P59759 from www.uniprot.org...
The NucPred score for your sequence is 0.89 (see score help below)
1 MIDSSKKQPQGFPEILTAEDFEPFKEKECLEGSNQKSLKEVLQLRLQQRR 50
51 TREQLVDQGIMPPLKSPAAFHEQIKSLERARTENFLKHKIRSRPDRSELV 100
101 RMHILEETFAEPSLQATQMKLKRARLADDLNEKIAQRPGPMELVEKNILP 150
151 VDSSVKEAIIGVVKEDYPHTHGEFSFDEDSSDALSPDQPASQESQGSAAS 200
201 PSEPKVSASPPPVTASTPAQFTSVSPAVPEFLKTPLTADQPPTRSTAPVL 250
251 PTNTVSSAKSGPMLVKQSHPKNPNDKHRSKKCKDPKPRVKKLKYHQYIPP 300
301 NQKGEKSEPQMDSNYARLLQQQQLFLQLQILSQQQQQQQQQHYNYQTILP 350
351 APIKTDKNSSSGSNSGSSSSMPARRPGPLPSSLDDLKVSELKTELKLRGL 400
401 PVSGTKPDLIERLKPYQEVTSSNLATGSIVAVSSATIVTSNPEVTVALPV 450
451 TTLHNAVTSSVSTFKADLALPATSSVPHVENAHSPLPISPSPSEQSSLST 500
501 DDTNMTDTFTEIMTMMSPSQLLCSSPLRVVSHDDSLSPSSSTLSTLELDA 550
551 AEKDRKLQEKEKQIEELKRKLEQEQKLVEVLKMQLEVEKRGQQRPPDPQP 600
601 SDPPHPFNTSDPKHGSVGSSIKDEASLPDCSSPQQPITVPGHSVGQPIST 650
651 GSQTLVAKKTVVVKQEVPMAQAEQQNVVSQFYLSSQGQPPALVAQPQALL 700
701 TTQTTQLLLPVSIQGSNVTSVQLPVGSLQLQTPAQGRVQAQPHVAAATQV 750
751 PAAALPSALTSALPQKQEAFPQHVLGQPQPVRKVFTNSAPNTVLQYQRQP 800
801 GPTNQQPFVSKTSNPALQSRTAPLAPLQNGPSLASKPSSPPPPQQFVVQH 850
851 SLFATPITKTKDPPRYEEAIKQTRSTQPALPEVSSVHSQQMDDLFDILIK 900
901 SGEISFPIKEEPSPISKMKPVTASITTMPVNTVVSRPPPQVQIAPPVSLE 950
951 PVNSLSASLENQLEAFLDGTLPSATDTGPLQNSSEDRESFSLIEDLQNDL 1000
1001 LSHSSMLYQSHSPMETSEAQLVSGTPCLSLDLSDSNLDNMEWLDITMPTT 1050
1051 SSGLTPLSTTAPSMFSADFLDPQDLPLPWD 1080
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.