SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P63135 from www.uniprot.org...

The NucPred score for your sequence is 0.67 (see score help below)

   1  NKSRKRRNRLSFLGAATVEPPKPIPLTWKTEKPVWVNQWPLPKQKLEALH    50
51 LLANEQLEKGHIEPSFSPWNSPVFVIQKKSGKWRMLTDLRAVNAVIQPMG 100
101 PLQPGLPSPAMIPKDWPLIIIDLKDCFFTIPLAEQDCEKFAFTIPAINNK 150
151 EPATRFQWKVLPQGMLNSPTICQTFVGRALQPVREKFSDCYIIHYIDDIL 200
201 CAAETRDKLIDCYTFLQAEVANAGLAIASDKIQTSTPFHYLGMQIENRKI 250
251 KQQKIEIRKDTLKTLNDFQKLLGDINWIRPTLGIPTYAMSNLFSILRGDS 300
301 DLNSKRILTPEATKEIKLVEEKIQSAQINRIDPLAPLQLLIFATAHSPTG 350
351 IIIQNTDLVEWSFLPHSTVKTFTLYLDQIATLIGQTRLRIIKLCGNDPDK 400
401 IVVPLTKEQVRQAFINSGAWQIGLANFVGIIDNHYPKTKIFQFLKLTTWI 450
451 LPKITRREPLENALTVFTDGSSNGKAAYTGPKERVIKTPYQSAQRAELVA 500
501 VITVLQDFDQPINIISDSAYVVQATRDVETALIKYSMDDQLNQLFNLLQQ 550
551 TVRKRNFPFYITHIRAHTNLPGPLTKANEQADLLVSSALIKAQELHALTH 600
601 VNAAGLKNKFDVTWKQAKDIVQHCTQCQILHLPTQEAGVNPRGLCPNALW 650
651 QMDVTHVPSFGRLSYVHVTVDTYSHFIWATCQTGESTSHVKKHLLSCFAV 700
701 MGVPEKIKTDNGPGYCSKAFQKFLSQWKISHTTGIPYNSQGQAIVERTNR 750
751 TLKTQLVKQKEGGDSKECTTPQMQLNLALYTLNFLNIYRNQTTTSAEQHL 800
801 TGKKNSPHEGKLIWWKDNKNKTWEIGKVITWGRGFACVSPGENQLPVWIP 850
851 TRHLKFYNEPIGDAKKRASTEMVTPVTWMDNPIEIYVNDSVWVPGPIDDR 900
901 CPAKPEEEGMMINISIGYRYPPICLGRAPGCLMPAVQNWLVEVPTVSPIS 950
951 RFTYHMVSGMSLRPRVNYLQDFSYQRSLKFRPKGKPCPKEIPKESKNTEV 1000
1001 LVWEECVANSAVILQNNEFGTIIDWAPRGQFYHNCSGQTQSCPSAQVSPA 1050
1051 VDSDLTESLDKHKHKKLQSFYPWEWGEKGISTPRPKIVSPVSGPEHPELW 1100
1101 RLTVASHHIRIWSGNQTLETRDCKPFYTIDLNSSLTVPLQSCVKPPYMLV 1150
1151 VGNIVIKPDSQTITCENCRLLTCIDSTFNWQHRILLVRAREGVWIPVSMD 1200
1201 RPWEASPSVHILTEVLKGVLNRSKRFIFTLIAVIMGLIAVTATAAVAGVA 1250
1251 LHSSVQSVNFVNDWQKNSTRLWNSQSSIDQKLANQINDLRQTVIWMGDRL 1300
1301 MSLEHRFQLQCDWNTSDFCITPQIYNESEHHWDMVRRHLQGREDNLTLDI 1350
1351 SKLKEQIFEASKAHLNLVPGTEAIAGVADGLANLNPVTWVKTIGSTTIIN 1400
1401 LILILVCLFCLLLVCRCTQQLRRDSDHRERAMMTMAVLSKRKGGNVGKSK 1450
1451 RDQIVTVSV 1459

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.