| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P70039 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAAASYDQLVKQVEALTMENTNLRQELEDNSNHLTKLETEATNMKEVLKQ 50
51 LQGSIEDEAMASSGPIDLLERFKDLNLDSSNIPAGKARPKMSMRSYGSRE 100
101 GSLSGHSGECSPVPVGSFQRRGLLNGSRESAGYMEELEKERLLLIAEHEK 150
151 EEKEKRWYYAQLQNLTKRIDSLPLTENFSMQTDMTRRQLEYEARQIRAAM 200
201 EEQLGTCQDMEKRVQTRVGKIHQIEEEILRIRQLLQSQVAEAAERTPQSK 250
251 HDAGSRDAEKLPDGQGTSEITASGNVGSGQGSSSRADHDTTSVMSSNSTY 300
301 SVPRRLTSHLGTKVEMVYSLLSMLGTHDKDDMSRTLLAMSSSQDSCIAMR 350
351 QSGCLPLLIQLLHGNDKDSVLLGNSRGSKEARASGSAALDNIIHSQPDDK 400
401 RGRREIRVLHLLEQIRAYCETCWEWQEAHEQGMDQDKNPMPAPVDHQICP 450
451 AVCVLMKLSFDEEHRHAMNELGGLQAIAELLQVDCEMYGLINDHYSVTLR 500
501 RYAGMALTNLTFGDVANKATLCSMKSCMRALVAQLKSESEDLQQVIASVL 550
551 RNLSWRADVNSKKTLREVGSVKALMECALDVKKESTLKSVLSALWNLSAH 600
601 CTENKADICSVDGALAFLVSTLTYRSQTNTLAIIESGGGILRNVSSLIAT 650
651 NEDHRQILRENNCLQTLLQHLKSHSLTIVSNACGTLWNLSARNAKDQEGL 700
701 WDMGAVSMLKNLIHSKHKMIAMGSAAALRNLMANRPAKYKDANIMSPGSS 750
751 VPSLHVRKQKALEAELDAQHLSETFDNIDNLSPKTTHRNKQRHKQNLCSE 800
801 YALDSSRHDDSICRSDNFSIGNLTVLSPYINTTVLPGSSSPRPTMDGSRP 850
851 EKDRERTAGLGNYHSTTESSGNSSKRIGIQLSTTAQISKVMDEVSNIHLV 900
901 QENRSSGSASEMHCMSDERNSQRKPSSNHPQSNPFTFTKAESSTRGCPVA 950
951 FMKMEYKMASNDSLNSVSSTEGYGKRGQVKPSVESYSEDDESKFFSYGQY 1000
1001 PAGLAHKIQSANHMDDNDTELDTPINYSLKYSDEQLNSGRQSPTQNERWS 1050
1051 RPKHIIDSEMKQSEQRQPRTTKTTYSSYTENKEEKHKKFPPHFNQSENVP 1100
1101 AYTRSRGANNQVDQSRVSSNLSNNSKASKPHCQVDDYDDDKTTNFSERYS 1150
1151 EEEQQEDETERQNKYNIKAYASEEHHGEQPIDYSRKYSTDVPSSAQKPSF 1200
1201 PYSNNSSKQKPKKEQVSSNSNTPTPSPNSNRQNQLHPNSAQSRPGLNRPK 1250
1251 QIPNKPPSINQETIQTYCVEDTPICFSRGSSLSSLSSAEDEIEGRERNSR 1300
1301 GQESNNTLQITEPKEISAVSKDGAVNETRSSVHHTRTKNNRLQTSNISPS 1350
1351 DSSRHKSVEFSSGAKSPSKSGAQTPKSPPEHYVQETPLMFSRCTSGSSLD 1400
1401 SFESHSIASSIASSVASEHMISGIISPSDLPDSPGQTMPPSRSKTPPPPQ 1450
1451 TVQAKKDGSKPIVPDEERGKVAKTAVHSAIQRVQVLQEADTLLHFATEST 1500
1501 PDGFSCASSLSALSLDEPYIQKDVQLKIMPPVLENDQGNKAEPEKEFIDN 1550
1551 KAKKEDKRSEQEKDMLDDTDDDIDILEECIISAMPRKPSRKNKKVPQPTP 1600
1601 GKPPPPVARKPSQLPVYKLLSSQNRLQTQKHVNFTHSDDMPRVYCVEGTP 1650
1651 INFSTATSLSDLTIESPPSEPTNDQPNTDSLSTDLEKRDTIPTEGRSTDD 1700
1701 TDASKPLNPTTVLDEDKAEEGDILAECIHSAMPKGKSHKPYRVKKIMDQI 1750
1751 NHTSAATSSGNSRSMQETDKNKPTSPVKPMPQSIGFKERLKKNTELKLNP 1800
1801 NSENQYCDPRKPSSKKPSKVANEKIPNNEERTKGFAFDSPHHYTPIEGTP 1850
1851 YCFSRNDSLSSLDFEDDDIDLSKEKAELRKEKGTKDTDQKVKYKHENRAI 1900
1901 NPMGKQDQTGPKSLGGRDQPKALVQKPTSFSSAAKGTQDRGGATDEKMEN 1950
1951 FAIENTPVCFSRNSSLSSLSDIDQENNNKETEPLKQTGTSETQLGLRRPQ 2000
2001 TSGYAPKSFHVEDTPVCFSRNSSLSSLSIDSEDDLLQECISSAMPKKRKP 2050
2051 SKIKNEVGKSRSNSVGGILAEEPDLTLDLRDIQSPDSENAFSPDSENFDW 2100
2101 KAIQEGANSIVSRLHQAAAAGSLSRQGSSDSDSILSLKSGISLGSPFHLT 2150
2151 LDKEEKTITSNKGPKILKPAEKSALENKKTEEEPKGIKGGKKVYKSLITG 2200
2201 KSRSSSDFSSHCKQSVQTNMPSISRGRTMIHIPGVRASSPSTSPVSKKGP 2250
2251 VFKNVPSKGSNENPSSSSSPKGTKPLKSELVYGSRPSSTPGGSSKGNSRS 2300
2301 GSRDSASSRPSPQPLSRPLQSPGRNSISPGKNGISPPNKFSQLPRTTSPS 2350
2351 TASTKSSGSGRMSYTSPGRQLSQPNLSKQSGLPKTHSSIPRSESASKSLN 2400
2401 QNVNTGSNKKVELSRMSSTKSSGSESDRSERPALVRQSTFIKEAPSPTLR 2450
2451 RKLEESASFESLSSSSRADSPPRSQTQTPALSPSLPDMALSTHSIQAGGW 2500
2501 RKMPPNLNPAAEHGDSRRRHDISRSHSESPSRLPITRSGTWKREHSKHSS 2550
2551 SLPRVSTWRRTGSSSSILSASSESSEKAKSEDEKQQVCSFPGPRSECSSS 2600
2601 AKGTWRKIKESEILETPSNGSSSTIAESNCSLESKTLVYQMAPAVSKTED 2650
2651 VWVRIEDCPINNPRSGRSPTGNSPPVIDNVLDQGQKEEAAKDCHTRHNSG 2700
2701 NGNVPLLENRQKSFIKVDGLDTKGTDPKSLINNQQETNENTVAERTAFSS 2750
2751 SSSSKHSSPSGTVAARVTPFNYNPSPRKSNGENSTSRPSQIPTPVTNSTK 2800
2801 KRDSKTETTDSSGSQSPKRHSGSYLVTSV 2829
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.