 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P70365 from www.uniprot.org...
The NucPred score for your sequence is 0.94 (see score help below)
1 MSGLGDSSSDPANPDSHKRKGSPCDTLASSTEKRRREQENKYLEELAELL 50
51 SANISDIDSLSVKPDKCKILKKTVDQIQLMKRMEQEKSTTDDDVQKSDIS 100
101 SSSQGVIEKESLGPLLLEALDGFFFVVNCEGRIVFVSENVTSYLGYNQEE 150
151 LMNTSVYSILHVGDHAEFVKNLLPKSLVNGVPWPQEATRRNSHTFNCRML 200
201 IHPPEDPGTENQEACQRYEVMQCFTVSQPKSIQEDGEDFQSCLICIARRL 250
251 PRPPAITGVESFMTKQDTTGKIISIDTSSLRAAGRTGWEDLVRKCIYAFF 300
301 QPQGREPSYARQLFQEVMTRGTASSPSYRFILNDGTMLSAHTKCKLCYPQ 350
351 SPDMQPFIMGIHIIDREHSGLSPQDDSNSGMSIPRINPSVNPGISPAHGV 400
401 TRSSTLPPSNNNMVSARVNRQQSSDLNSSSSHTNSSNNQGNFGCSPGNQI 450
451 VANVALNQGQAGSQSSNPSLNLNNSPMEGTGIALSQFMSPRRQANSGLAT 500
501 RARMSNNSFPPNIPTLSSPVGITSGACNNNNRSYSNIPVTSLQGMNEGPN 550
551 NSVGFSAGSPVLRQMSSQNSPSRLSMQPAKAESKDSKEIASILNEMIQSD 600
601 NSDNSANEGKPLDSGLLHNNDRLSEGDSKYSQTSHKLVQLLTTTAEQQLR 650
651 HADIDTSCKDVLSCTGTSSSASSNPSGGTCPSSHSSLTERHKILHRLLQE 700
701 GSPSDITTLSVEPEKKDSVPASTAVSVSGQSQGSASIKLELDAAKKKESK 750
751 DHQLLRYLLDKDEKDLRSTPNLCLDDVKVKVEKKEQMDPCNTNPTPMTKP 800
801 APEEVKLESQSQFTADLDQFDQLLPTLEKAAQLPSLCETDRMDGAVTGVS 850
851 IKAEVLPASLQPTTARAAPRLSRLPELELEAIDNQFGQPGAGDQIPWANN 900
901 TLTTINQNKPEDQCISSQLDELLCPPTTVEGRNDEKALLEQLVSFLSGKD 950
951 ETELAELDRALGIDKLVQGGGLDVLSERFPPQQATPPLMMEDRPTLYSQP 1000
1001 YSSPSPTAGLSGPFQGMVRQKPSLGAMPVQVTPPRGTFSPNMGMQPRQTL 1050
1051 NRPPAAPNQLRLQLQQRLQGQQQLMHQNRQAILNQFAANAPVGMNMRSGM 1100
1101 QQQITPQPPLNAQMLAQRQRELYSQQHRQRQIIQQQRAMLMRHQSFGNNI 1150
1151 PPSSGLPVQMGTPRLPQGAPQQFPYPPNYGTNPGTPPASTSPFSQLAANP 1200
1201 EASLATRSSMVNRGMAGNMGGQFGAGISPQMQQNVFQYPGPGLVPQGEAT 1250
1251 FAPSLSPGSSMVPMPVPPPQSSLLQQTPPTSGYQSPDMKAWQQGTMGNNN 1300
1301 VFSQAVQSQPAPAQPGVYNNMSITVSMAGGNANIQNMNPMMGQMQMSSLQ 1350
1351 MPGMNTVCSEQMNDPALRHTGLYCNQLSSTDLLKTDADGNQQVQQVQVFA 1400
1401 DVQCTVNLVGGDPYLNQPGPLGTQKPTSGPQTPQAQQKSLLQQLLTE 1447
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.