| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P70478 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAAASYDQLLKQVEALKMENSNLRQELEDNSNHLTELETEASNMKEVLKQ 50
51 LQGSIEDETMTSGQIDLLERLKEFNLDSNFPGVKLRSKMSLRSYGSREGS 100
101 VSSRSGECSPVPMGSFPRRAFVNGSRESTGYLEELEKERSLLLADLDKEE 150
151 KEKDWYYAQLQNLTKRIDSLPLTENFSLQTDMTRRQLEYEARQIRAAMEE 200
201 QLGTCQDMEKRAQRRIARIQQIEKDILRVRQLLQSQAAEAERSSQSKHET 250
251 ASHEAERQLEGQGVAESNLATSGSGQSSAARVDHETAGVLSSSGTHSAPR 300
301 RLTSHLGTKVEMVYSLLSMLGTHDKDDMSRTLLAMSSSQDSCISMRQSGC 350
351 LPLLIQLLHGNDKDSVLLGNSRGSKEARARASAALHNIIHSQPDDKRGRR 400
401 EIRVLHLLEQIRAYCETCWEWQEAHEQGMDQDKNPMPAPVEHQICPAVCV 450
451 LMKLSFDEEHRHAMNELGGLQAIAELLQVDCEMHGLTDDHYSVTLRRYAG 500
501 MALTNLTFGDVANKATLCSMKGCMRALVAQLKSESEDLQQVIASVLRNLS 550
551 WRADVNSKKTLREVGSVKALMECALEVKKESTLKSVLSALWNLSAHCTEN 600
601 KADICAVDGALAFLVGTLTYRSQTNTLAIIESGGGILRNVSSLIATNEDH 650
651 RQILRENNCLQTLLQHLKSHSLTIVSNACGTLWNLSARNPKDQEALWDMG 700
701 AVSMLKNLIHSKHKMIAMGSAAALRNLMANRPAKYKDANIMSPGSSLPSL 750
751 HVRKQKALEAELDAQHLSETFDNIDNLSPKASHRSKQRHKQNLYGDYVFD 800
801 ASRHDDNRSDNFNTGNMTVLSPYLNTTVLPSSSSSRGSLDSSRSEKDRSL 850
851 ERERGIGLSTYHSATENPGTSSKRGLQLSATAAQIAKVMEEVSALHTSQD 900
901 DRSPASAAELHCVAEERTAARRSSASHTHPNTHNFAKSESSNRTCSMPYA 950
951 KVEYKRSSNDSLNSVTSSDGYGKRGQMKPSVESYSEDDEGKFCSYGQYPA 1000
1001 DLAHKIHSANHMDDNGGELDTPINYSLKYSDEQLNSGRQSPSQNERWARP 1050
1051 KHVIEDEIKQNEQRQSRSQNTNFPVYSENTDDKHLKFQQHFGQQECVSPY 1100
1101 RSRGTNGSETNRMGSSHAVNQNVNQSLCQEDDYEDDKPTNYSERYSEEEQ 1150
1151 HEEEERPTNYSIKYNEEKHHVDQPIDYSLKYATDISSSQKPSFSFSKTPS 1200
1201 VQGTKTEHNSPSSEAASAPSSNAKRQSQLHPSSAQRNGQTPKGTACKVPS 1250
1251 INQETMQTYCVEDTPICFSRCSSLSSLSSAEDEIGCDQTTQEADSANTLQ 1300
1301 IAEIKENDVTRSAQDPASDVPAVSQSTRTKPSRLQASGLASESARHKAVE 1350
1351 FSSGAKSPSKSGAQTPKSPPEHYVQETPLVFSRCTSVSSLDSFESRSIAS 1400
1401 SVQSEPCSGMVSGIVSPSDLPDSPGQTMPPSRSKTPPPPPPPQPVQTKRE 1450
1451 VPKTKVPAAEQREGGPKQTAVSAAVQRVQVLPDADTLLHFATESTPDGFS 1500
1501 CSSSLSALSLDEPFIQKDVELRIMPPVQENDNGNETEPEQPEESNENQDK 1550
1551 EVEKPDSEKDLLDDSDDDDIEILEECIISAMPTKSSRKAKKLAQTASKLP 1600
1601 PPVARKPSQLPVYKLLPSQSRLQAQKHVSFTPGDDVPRVYCVEGTPINFS 1650
1651 TATSLSDLTIESPPNELAAGDGVRASVQSGEFEKRDTIPTEGRSTDEAQR 1700
1701 GKVSSIAIPDLDGSKAEEGDILAECINSALPKGRSHKPFRVKKIMDQVQQ 1750
1751 ASMTSSGTNKNQIDTKKKKPTSPVKPMPQNTEYRTRVRKNTDSKVNVNTE 1800
1801 ETFSDNKDSKKQSLKNNPKDLNDKLPDNEDRVRGGFTFDSPHHYAPIEGT 1850
1851 PYCFSRNDSLSSLDFDDDDVDLSREKAELRKGKESKDSEAKVTCHTEPSS 1900
1901 SQQSARKAQASTKHPVNRGPSKPLLQEQPTFPQSSKDVPDRGAATDEKLQ 1950
1951 NFAIENTPVCFSRNSSLSSLSDVDQENNNNEETGPVRDAEPANAQGQPGK 2000
2001 PQASGYAPKSFHVEDTPVCFSRNSSLSSLSIDSEDDLLRECISSAMPKKR 2050
2051 RPSRLKGEGEWQSPRKVGSVLAEDLTLDLKDIQRPESEHGLSPDSENFDW 2100
2101 KAIQEGANSIVSSLHQAAAAAACLSRQASSDSDSILSLKSGVSLGSPFHL 2150
2151 TPDQEEKPFTSHKGPRILKPGEKSTLEAKKIESENKGIKGGKKVYKSLIT 2200
2201 GKIRSNSEISSQMKQPLQTNMPSISRGRTMIHIPGVRNSSSSTSPVSKKG 2250
2251 PPLKTPASKSPSEGPVATTSPRGTKPAVKSELSPITRQTSHISGSNKGPS 2300
2301 RSGSRDSTPSRPTQQPLSRPMQSPGRNSISPGRNGISTPNKLSQLPRTSS 2350
2351 PSTASTKSSGSGKMSYTSPGRQLSQQNLSKQTGLSKNASSIPRSESASKG 2400
2401 LNQMNNSNGSNKKVELSRMSSTKSSGSESDRSERPALVRQSTFIKEAPSP 2450
2451 TLRRKLEESASFESLSPSSRPDSPTRSQAQTPVLSPSLPDMSLSTHPSVQ 2500
2501 AGGWRKLPPNLSPTIEYSDGRPSKRHDIARSHSESPSRLPVNRAGTWKRE 2550
2551 HSKHSSSLPRVSTWRRTGSSSSILSASSESSEKAKSEDEKHVNSVPGPRQ 2600
2601 MKENQVPTKGTWRKIKESEISPTNTVSQTTSSGAASGAESKTLIYQMAPA 2650
2651 VSRTEDVWVRIEDCPINNPRSGRSPTGNTPPVIDSISEKGNPSIKDSKDT 2700
2701 QGKQSVGSGSPVQTVGLENRLNSFIQVEAPEQKGTETKAGQGSPAPVAET 2750
2751 GETCMAERTPFSSSSSSKHSSPSGTVAARVTPFNYNPSPRKSSADSTSAR 2800
2801 PSQIPTPVGSSTKKRDSKTDSTESSGAQSPKRHSGSYLVTSV 2842
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.