 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P70587 from www.uniprot.org...
The NucPred score for your sequence is 0.78 (see score help below)
1 MTTKRKLIGRLVPCRCFRGEEEIISVLDYSHCSLQQVPKEVFNFERTLEE 50
51 LYLDANQIEELPKQLFNCQALRKLSIPDNDLSSLPTSIASLVNLKELDIS 100
101 KNGVQEFPENIKCCKCLTIIEASVNPISKLPDGFTQLLNLTQLYLNDAFL 150
151 EFLPANFGRLVKLRILELRENHLKTLPKSMHKLAQLERLDLGNNEFSELP 200
201 EVLDQIQNLRELWMDNNALQVLPGSIGKLKMLVYLDMSKNRIETVDMDIS 250
251 GCEALEDLLLSSNMLQQLPDSIGLLKKLTTLKVDDNQLTMLPNTIGNLSL 300
301 LEEFDCSCNELESLPPTIGYLHSLRTLAVDENFLPELPREIGSCKNVTVM 350
351 SLRSNKLEFLPEEIGQMQRLRVLNLSDNRLKNLPFSFTKLKELAALWLSD 400
401 NQSKALIPLQTEAHPETKQRVLTNYMFPQQPRGDEDFQSDSDSFNPTLWE 450
451 EQRQQRMTVAFEFEDKKEDDESAGKVKALSCQAPWDRGQRGITLQPARLS 500
501 GDCCTPWARCDQQIQDMPVPQSDPQLAWGCISGLQQERSMCAPLPVAAQS 550
551 TTLPSLSGRQVEINLKRYPTPYPEDLKNMVKSVQNLVGKPSHGVRVENAN 600
601 PTANTEQTVKEKFEHKWPVAPKEITVEDSFVHPANEMRIGELHPSLAETP 650
651 LYPPKLVLLGKDKKESTDESEVDKTHCLNNSVSSGTYSDYSPSQASSASS 700
701 NTRVKVGSLQPTTKDAVHNSLWGNRIAPPFPQPLDAKPLLTQREAVPPGN 750
751 LPQRPDRLPMSDAFPDNWTDGSHYDNTGFVSEEATGENANNNPLLSSKAR 800
801 SVPAHGRRPLIRQERIVGVPLELEQSTHRHTPETEVPPSNPWQNWTRTPS 850
851 PFEDRTAFPSKLETTPTTSPLPERKDHMKEPTETPGPFSPGVPWEYHDPT 900
901 PNRSLGNVFSQIHCRPDSSKGVIAISKSTERLSPLMKDIKSNKFKKSQSI 950
951 DEIDVGTYKVYNIPLENYASGSDHLGSHERPDKFLGPEHGMSSMSRSQSV 1000
1001 PMLDDEMLMYGSSKGPPQQKASMTKKVYQFDQSFNPQGAVEVKAEKRIPP 1050
1051 PFAHNSEYVQQPGKNIAKDLVSPRAYRGYPPMEQMFSFSQPSVNEDAMVN 1100
1101 AQFASQGPRAGFLRRADSLASSTEMAMFRRVSEPHELPPGDRYGRAAYRG 1150
1151 GLEGQSSVSMTDPQFLKRNGRYEDEHPSYQEVKAQAGSFPAKNLTQRRPL 1200
1201 SARSYSTESYGASQTRPVSARPTMAALLEKIPSDYNLGNYGDKTSDNSDI 1250
1251 KTRPTPVKGEESCGKMPADWRQQLLRHIEARRLDRTPSQQSNILDNGQED 1300
1301 VSPSGQWNPYPLGRRDVPPDTITKKAGSHIQTLMGSQSLQHRSREQQPYE 1350
1351 GNINKVTIQQFQSPLPIQIPSSQATRGPQPGRCLIQTKGQRSMDGYPEQF 1400
1401 CVRIEKNPGLGFSISGGISGQGNPFKPSDKGIFVTRVQPDGPASNLLQPG 1450
1451 DKILQANGHSFVHMEHEKAVLLLKSFQNTVDLVIQRELTV 1490
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.