 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P78716 from www.uniprot.org...
The NucPred score for your sequence is 0.74 (see score help below)
1 MEVTSAAAPSTGSSANGVTAAAPFPTIEPERVVEHLAAVCEIALGATRDE 50
51 LEQLGSLLHKARYGETVSRCTRFASDSQNVLYIQKDIANPSAVEAGADPA 100
101 APVTYNYTLSTEISSSSTTVSSLVLIKSPQPIDPTRPLTSQIFITNLPGP 150
151 ASLNAGVGEQGTALSPWEVLHSQVHHALVPYFDANTKSQQLANGSRGRAD 200
201 VDAKTGIPVTKKRLNDLELSLLHLQQNVDIPEISLTFHSIVQNVLDDAES 250
251 RHTRPSLDAIPQIFSQDSTFLNRLQANVNTWIKSIQGITKLTKDPSSNAN 300
301 QEFNTASQEVNFWLSMESALEGIEGQLRSEGVLLTLEILKHAKRFQATVS 350
351 FTADTGLKEAMDKVQKYNQLMRDFPLDELLSATSLSKAQEAIAQIFGHLN 400
401 KKLRICPYPIRRALPLVEAISADLDEVLHRLLPGTELVNLDYQQFQTIMQ 450
451 TCDDIFRTWEENVKEFTNVAREVTRRRNEKFIPIKINKKHSELESRIKYV 500
501 STFRDNHEQLQRTIINVLGPQATIPGVTETTGSNGIVMEEMGDVDAVEEV 550
551 KQAWEALHNVDLLDVTDQGKERWVRAENLYNERTTRVENSIIARLRDRLA 600
601 TAKTANEMFRVFSKFNALFVRPKIRGAIQEYQNQLMDHVKQAINGLHERF 650
651 KQQYGHSETHAMAQLRDLPPVSGAIIWARQIEFQLDGYMRKVEAVLGPDW 700
701 TMHTEGHKLQEESELFKQKLDTARIYEAWIADVGRRKISISGQLFEIARV 750
751 RSAGGILELTVNFDPQVITLFKETRNLTWQSYSVPHAVTTVSKDAKRVYP 800
801 YAVSLMESVRTLSQTLRQISVMGEESVLLFGYRNDVYKLISEGVPLRWES 850
851 FINSHELFYSDNRQTRPLLPGGTDFGLAKNTESKHGMFIRGFAAAVSVLQ 900
901 QKAVSLNFIHATVEQALKELNTCPYEEAAFHSRLDTIQAAVDQLNLEQYV 950
951 NLDFWVRGLNSKVQSILLTRLQSAVHAWIEAFEDDTPDDEMRRKVNNNNE 1000
1001 EAKPDGPTMKRLVLELAMRNQVIYLDLLLEFARASWFLHLHEWLGIVCNL 1050
1051 RKIKATRYQMSLTTTANDEPRFTDLPSECAGLLQRVYVSVEKKLHEVSAY 1100
1101 VDKWLQFQSLWDLQSEQVYDALGEQLPRWLQLLQEIRKTRSTFDTQEVSR 1150
1151 AFGHLTIDYDQVQTKVNAKYDQWQHEILMKFASRLGNRMREINAEIEKAR 1200
1201 KHLESQSSDASSTAQAVQFITVVQSCKRNVKTWAPEIDMFRQGQSTLVRQ 1250
1251 RYQFPNDWLHIEQIDSQWEALKEILEKKSRIVQDQTDALQAKIVAEDKLI 1300
1301 NERIAEIAAQWNEEKPVSGTIQPDVASATLSSFESRISKLQDDAQMVAKA 1350
1351 KEALDIPASPDTSLEATLEEVRDFQSVWSNLSTIWASLNETRDVLWTAVQ 1400
1401 PRKIRSKVDDLIKSTKEMPSRMRQYAAFEHVQGILRGFLKVNSILSDLKS 1450
1451 DAIRERHWHKIYKQIKPQKRFSPSSMTLGDVWDLNLVATEVIVKDIIAQA 1500
1501 QGEMVLEEFLKQVRETWQNYALEMVNYQNKIGLIRGWDDLFAKCSENLNS 1550
1551 LQAMKHSPYYKEFEEEAVAWEDKLNRVHVLFDVWIDVQRQWVYLEGVFTG 1600
1601 NADIKHLLPIESGRFQNINSEFLAVMKKANKSPYVLEVLNIPNVQKSLER 1650
1651 LAEMLNKIQKALGEYLEKERVSFPRFYFVGDEDLLEMIGNSNDTLRIAKH 1700
1701 FKKMFAGLSGLVMDDETVISGFTSKEGEVVRLKKEISLAKTPKINDWLAL 1750
1751 LEGGMKSTLAELLAEAVDQYTPIFESETIDREALNGFMDAYPSQIVVLAT 1800
1801 QVVWTTAVHKSLTTGGETLKAIFDREVRVLRVLADTVLGELEVILRKKCE 1850
1851 QQITECVHQRDTIEKLINAKANSTNHYLWQLQMRYVYEPQGEYLDRLYIK 1900
1901 MANAKLNYGFEYLGVPERLVRTPLTDRCFLTLTQALCQRLGGSPYGPAGT 1950
1951 GKTESVKALGVQLGRFTLVFCCDDTFDFQAMGRIFLGICQVGAWGCFDEF 2000
2001 NRLEERILSAVSQEIQNIQLGLKQGVEDDQSQIELVGRHLHVNENTGIFI 2050
2051 TMNPGYAGRSNLPDNLKKLFRSVAMSKPDKELIAEVMLYSQGFNQAKQLS 2100
2101 KQTVPFFDQCSGRLSKQAHYDFGLRALKSVLVSSGGLKRARLGEGSLGAE 2150
2151 EVVEPEIIVQSIRETIAPKLIKSDVDIMATIETDCFPGVQYVPANLEALE 2200
2201 NAIRELAAERHLVVNELWMTKVLQLYQIQKIHHGVMMVGNSGSGKSAAWR 2250
2251 LLLDALQKVEGVEGVSHVIDSKVMSKEALYGNLDSTTREWTDGLFTSILR 2300
2301 KIVDNLRGEDSKRHWIVFDGDVDPEWVENLNSVLDDNKLLTLPNGERLNL 2350
2351 PANVRIMFEVETLKYATLATVSRCGMVWFSEDTVSPTMMVQNYLSTLRSV 2400
2401 PFEDLDEDSVATGHTPAKTLAVQSEFASLLHVYLTDENFILPALQRAEGY 2450
2451 NHIMEFTTARVLTTLFSLLNKAVRDAIEYNGQHSDFPLESEQIESFISKK 2500
2501 LLLALVWALTGDCPLTDRKSFGDDICALANFGSPPLDGNSSLIDFDVTLP 2550
2551 KAEWAPWQNQVPSVEVNTHSITQTDVVIPTLDTVRHENVLYSWLAEHKPL 2600
2601 LLCGPPGSGKTMTLFSALRKLPNMEVVGLNFSSATTPDLLIKTFEQYCEY 2650
2651 KKTLNGVMLSPTQIGRWLVIFCDEINLPAPDKYGTQRAISFLRQLVEHNG 2700
2701 FWRTSDKSWVTLDRIQFVGACNPPTDAGRTPMGARFLRHAPLIMVDYPGE 2750
2751 LSLNQIYGTFNSAVLKIIPSLRGYAEPLTHAMVRFYLESQQRFTPKIQPH 2800
2801 YVYSPRELTRWVRGVYEAIRPLEALTIEGLIRIWAHEALRLFQDRLVAEE 2850
2851 ERQWTDESVRRIALEFFPNIDEEKALGGPILFSNWLSKNYVPVDREQLRD 2900
2901 FVKARLKTFCEEEVDVPLILFNDVLEHVLRIDRVFRQPQGHLILIGVSGS 2950
2951 GKTTLSRFVAWMNGLKVFQIKVHGKYSAEDFDDDLRDVLRRCGCKGEKIC 3000
3001 FIMDESNVLDSGFLERMNTLLANAEVPGLFEGDEYAALMTACKEGAQRQN 3050
3051 LRLDSPEEMYKWFTQQIVKNLHVVFTMNPPEDGLSSKAATSPALFNRCVL 3100
3101 NWFGDWSDQALFQVGHELTQSIDLDRSNFECPDTIPVAYRGLQLPPSHRE 3150
3151 RVVNSMVHIHYSLQRYNEKLLKQQGKVTFLRPRHFLDFVTQYIKLYNEKR 3200
3201 EDLEEQQRHLNVGLEKLRDTVDKVRDLRVSLAEKKKQLEQKDAEANEKLQ 3250
3251 RMVADQREAEQRKNTSLEIQANLEKQEAEVASRKKVVLEDLAKAEPAVEE 3300
3301 AKASVSNIKRQHLTEVRSMGNPPQGVRLAMDAVCTLLGHRINDWKAVQGI 3350
3351 LRKDDFIASILMFDNAKQMTKGLRNKMRNDFLSNPEFTFEKVNRASKACG 3400
3401 PLVQWVAAQVNYFDILDRVGPLKIEVEQLEDQALETKAQAKSVQNNIADL 3450
3451 EASINTYKTEYAALISETQAIKAEMSRVQFKVDRSVRLLDSLSSERVRWE 3500
3501 AGSKSFEIQISTLVGDVLVAAAFLAYSGLYDQTFRKSMMDDWFHQLHLSG 3550
3551 IQYKSPNPVTEYLSTADERLGWQENALPVDDLCTENAIILKRFNRYPLII 3600
3601 DPSGRVTEFLQKECKDRRLTVTSFLDDTFTKQLESSLRFGNPILIQDAEH 3650
3651 LDPILNHVLNKECQRTGGRVLIQLGKQEIDFSPAFKLYLSTRDPSATFAP 3700
3701 DICSRTTFVNFTVTQSSLQTQSLNDVLKSERPDVDERRSNLIKLQGEFKI 3750
3751 HLRQLEKRLLQALNESRGNILDDDNVIETLETLKTEAAEISAKMSNTEGV 3800
3801 MAEVEEITQQYSIIARSCSAVFAVLEQLHYLNHFYQFSLQYFLDIFQSVL 3850
3851 HGNKNLANETDHNARRDVIVHDLFVNTFKRTALGLLQKDRITLGMLLAQA 3900
3901 SPYKMDKSVIDMILDNRVEGKDLSSHPDDRENAFAQAKKLSAIKDKIDAI 3950
3951 STEDWDKFFTEELAENAVPHIWDEKTEAIDQALLSLLLVKLFRMDRFVPA 4000
4001 AERFVAQVFGSDIFDIVEDLKQTVTQVSATLPISLVSSPGFDASYKVDNL 4050
4051 VERMRVKCTNIAMGSNEGLASADKAISNAAQTGSWVLVKNVHLAPTWLQS 4100
4101 LEKRMESLNPHSDFRLFLSMESSPKIPVNLLRASRVLMYEQPAGVRANMK 4150
4151 DSMSSLSTRATKSPVERTRLYLLLSFLHAVVQERLRYAPNLGWKGFWEFN 4200
4201 DSDYECSAYIVDTWIDGVAGNRTNLAPQNIPWEMLRYLVTETYGGKIDDE 4250
4251 GDFKLLSQLVTSFLTPAAYEVDHKLVDGPEGGLVVPSGTSFQDFNAWIHR 4300
4301 LPEREPPTYLGLPANAEKLLLGGLGRSLIGNLRKVTELLDEGEQLVTEV 4349
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.