SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P81128 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MMMARKQDVRIPTYNISVVGLSGTEKEKGQCGIGKSCLCNRFVRPSADEF    50
51 HLDHTSVLSTSDFGGRVVNNDHFLYWGEVSRSLEDCVECKMHIVEQTEFI 100
101 DDQTFQPHRSTALQPYIKRAAATKLASAEKLMYFCTDQLGLEQDFEQKQM 150
151 PDGKLLVDGFLLGIDVSRGMNRNFDDQLKFVSNLYNQLAKTKKPIVIVLT 200
201 KCDEGVERYIRDAHTFALSKKNLQVVETSARSNVNVDLAFSTLVQLIDKS 250
251 RGKTKIIPYFEALKQQSQQIATAKDKYEWLVSRIVKSHNENWLSVSRKMQ 300
301 ASPEYQDYVYLEGTQKAKKLFLQHIHRLKHEHIERRRKLYLAALPLAFEA 350
351 LIPNLDEVDHLSCIKAKKLLETKPEFLKWFVVLEETPWDETSHIDNMENE 400
401 RIPFDLMDTVPAEQLYETHLEKLRNERKRAEMRRAFKENLETSPFITPGK 450
451 PWEEARSFIMNEDFYQWLEESVYMDIYGKHQKQIIDRAKEEFQELLLEYS 500
501 ELFYELELDAKPSKEKMGVIQDVLGEEQRFKALQKLQAERDALILKHIHF 550
551 VYHPTKETCPSCPACVDAKIEHLISSRFIRPSDRNQKNSLSDPNIDRINL 600
601 VILGKDGLARELANEIRALCTNDDKYVIDGKMYELSLRPIEGNVRLPVNS 650
651 FQTPTFQPHGCLCLYNSKESLSYVVESIEKSRESTLGRRDNHLVHLPLTL 700
701 ILVNKRGDTSGETLHSLIQQGQQIASKLQCVFLDPASAGIGYGRNINEKQ 750
751 ISQVLKGLLDSKRNLNLVSSTASIKDLADVDLRIVMCLMCGDPFSADDIL 800
801 SPVLQSQTCKSSHCGSSNSVLLELPIGVHKKRIELSVLSYHSSFSIRKSR 850
851 LVHGYIVFYSAKRKASLAMLRAFLCEVQDIIPIQLVALTDGAIDVLDNDL 900
901 SREQLTEGEEIAQEIDGRFTSIPCSQPQHKLELFHPFFKDVVEKKNIIEA 950
951 THMYDNVAEACSTTEEVFNSPRAGSPLCNSNLQDSEEDVEPPSYHLFRED 1000
1001 ATLPSLSKDHSKFSMELEGNDGLSFIMSNFESKLNNKVPPPVKPKPPVHF 1050
1051 EITKDLSYLDQGHREGQRKSMSSSPWMPQDGFDPSDYAEPMDAVVKPRNE 1100
1101 EENIYSVPHDSTQGKIITIRNINKAQSNGSGNGSDSEMDTSSLERGRKVS 1150
1151 AVSKPVLYRTRCTRLGRFASYRTSFSVGSDDELGPIRKKEEDQASQGYKG 1200
1201 DNAVIPYETDEDPRRRNILRSLRRNTKKPKPKPRPSITKATWESNYFGVP 1250
1251 LTTVVTPEKPIPIFIERCIEYIEATGLSTEGIYRVSGNKSEMESLQRQFD 1300
1301 QDHNLDLAEKDFTVNTVAGAMKSFFSELPDPLVPYSMQIDLVEAHKINDR 1350
1351 EQKLHALKEVLKKFPKENHEVFKYVISHLNRVSHNNKVNLMTSENLSICF 1400
1401 WPTLMRPDFSSMDALTATRSYQTIIELFIQQCPFFFYNRPISEPPGAAPG 1450
1451 SPSAMAPTVPFLTSTPATSQPSPPQSPPPTPQSPMQPLLSSQLQAEHTL 1499

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.